

 Navigation

 	
 index

 	
 next |

 	Carvoyant API 1.0 documentation

Welcome to Carvoyant API’s documentation!

Getting Started

	Getting Started
	OAuth2 / Delegated Access

	Access & Registration Workflows

API Overview

	API Overview
	JSON Success Response Format

	JSON Error Response Format

	HTTP Verbs

	Sorting and Paging

API Reference

	API Reference
	Data Types

	Resources

Sandbox API

	Sandbox API
	The Environment

	Provisioning a Key

	Interactive API

	Vehicle Data

Driver Dashboard

	Driver Dashboard
	Overview

	Trips

	Alerts

	Applications

	Raw Data

Sample Integrations

	Sample Integrations
	scriptr.io

	SmartThings

	Force.com

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

Getting Started

	OAuth2 / Delegated Access
	Examples
	Authorization Code

	Implicit

	Client Credentials

	Using the Access Token

	Using the Refresh Token

	Access & Registration Workflows
	Scenario 1 - New Carvoyant Account

	Scenario 2 - Existing Carvoyant User (or using the Carvoyant new account UI)

Overview

Before accessing the Carvoyant system as a developer, you must first register on our developer portal. After your account is registered, you will be able to make calls into our system. One of our main philosophies is that our users have full control over who can access the data for their vehicles. In order to facilitate this, nearly all calls that a developer makes into the system requires an OAuth2 [http://tools.ietf.org/html/draft-ietf-oauth-v2-20] access token that the end user has granted. Once a token has been granted, the various Carvoyant resources will be accessible through the API.

Developer Registration

The first step in building an application for the Carvoyant system is to register with us as a developer. We have several different developer levels depending on your interest. You can view the different developer levels and associated pricing here [https://developer.carvoyant.com/pricing] or you can just go register here [https://developer.carvoyant.com/member/register].

During registration you will enter in some basic information about your application and you will be given an API key to use in your application. Please only create a Standard Developer key if you are also purchasing a developer device or already have a Carvoyant enable vehicle. A free Trial key is available if you are just taking a look.

Sandbox Access

In order to allow developers to try out our system, or even just develop against a non-production environment, we’ve created a Sandbox version of our API. This environment matches our production environment with two important distinctions. First, it is not possibly to connect a live vehicle to an account in this system. All of the data in this system is “fake”. Second, all developers have the ability to call an endpoint that allows them to create their own vehicle data. In this way, you can programmatically generate the vehicle data that you need to test your application. Review the information about the Sandbox API to get started.

Paid Standard Developer Accounts

Every paid Standard Developer account also includes one telematics device to connect your car to the Carvoyant platform. Before that the data for your car can be accessed, you must register as a Carvoyant user here [https://driver.carvoyant.com] (this can also be done through an API call). It’s important to recognize the difference between a developer account and a user account. Developer accounts are authorized to make API calls against the Carvoyant platform.

Developer vs. User Accounts

When working with the Carvoyant platform, it’s very important to understand the difference between Developer accounts and User accounts. A Developer account is registered through https://developer.carvoyant.com and is what you will use to interact with the Carvoyant API. A User account is registered with the Carvoyant platform (either programmatically through the /account endpoint, or on the driver dashboard at https://driver.carvoyant.com). User accounts contain the vehicles which contain the data collected by the telematics device.

All Carvoyant Users can create a Developer account to access their own connected car data.

Making an API Call

The best way to get familiar with our API is to jump in and start using it. Using our interactive documentation [https://developer.carvoyant.com/io-docs], you can start calling the API directly.

We’ve also added a couple of sample applications to our GitHub repository.

Car-Locator [https://github.com/carvoyant/Car-Locator] is an Android application that uses the Implicit grant type to authenticate a user. Once logged in, it displays a map of the users Carvoyant enabled vehicles.

Example-Carvoyant-Web-App [https://github.com/carvoyant/Example-Carvoyant-Web-App] is a Grails web application that uses it’s own security model to authenticate it’s application users and then lets that user connect to their Carvoyant account. This application uses the Authorization Code grant type.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

OAuth2 / Delegated Access

The Carvoyant system uses an OAuth2 [http://tools.ietf.org/html/rfc6749] implementation in order to allow users to delegate access to the applications that they want to use. All four of the Authorization Grant types [http://tools.ietf.org/html/rfc6749#section-1.3] have been implemented, however, only Authorization Code, Implicit and Client Credentials are available to our standard development partners. If you need to support the Resource Owner type, please contact us to discuss.

Here is a brief summary of how you will use each of the grant types when accessing the Carvoyant system. Please refer to the specification for details on each grant type.

	Grant Type
	Usage

	Authorization Code [http://tools.ietf.org/html/draft-ietf-oauth-v2-20#section-1.4.1]
	This type will be used in the scenario where the system making the actual API call is in a secured environment. For example,
web applications where the Carvoyant API call originates from our partners server will use this method. The development partner
will direct the user to a Carvoyant hosted web page where the user will log in and grant access to the development partner. The
Carvoyant system will redirect the user back to an endpoint that the development partner hosts which will contain an authorization
code. The development partner will then make a request from their controlled environment to retrieve an access token to the users
Carvoyant data. That call will be a server to server call over SSL and will require the development partners credentials. The
response will include an access token and a refresh token per the OAuth2 specification. This is the preferred grant type as it
provides the highest level of security in the token negotiation process.

	Implicit [http://tools.ietf.org/html/draft-ietf-oauth-v2-20#section-1.4.2]
	This type will be used when the calls into the Carvoyant system are made from an insecure environment. The primary example for this
use case is a mobile application. In this process, the development partners application (typically running on a resource controlled
by the user) directs the user to a Carvoyant hosted web page where the user will log in and grant access to the development
partner. The Carvoyant system will redirect the user back to an endpoint that the development partner specifies. That redirect will
contain the access token per the OAuth2 specification. In this grant type, refresh tokens are not provided.

	Client Credentials [http://tools.ietf.org/html/draft-ietf-oauth-v2-20#section-1.4.3]
	There are a few calls into the Carvoyant API that the development partner will make that does not require a user access token. A
primary example of this is the call to register a new account. Since the account does not exist yet, there is no user to grant
access. API calls using this grant type will still expect an access token, but that token will be requested using only the
development partners credentials.

Warning

Configuration Requirements

In order to ensure the security of the OAuth2 process, there are two requirements that must be met. When you registered your application, one of the fields that you were asked for was the “Register Callback URL”. This is the URL that the OAuth2 process will redirect users back to after they authorize your application. Specifically, it is the value of the redirect_uri in all of the below examples. There are two important aspects to this

	The value MUST be an SSL protected URL of the form https://... and the certificate must be signed by a trusted certificate authority (ie, self signed certificates are not supported).

	All requests that are made into the OAuth2 process must use that value for the redirect_uri. Mismatched values will generate errors and will result in an access token not being generated.

If you need to change this value, or are unsure of what it is set to, you can access it by logging into the Developer Console [https://developer.carvoyant.com/] and selecting “My Account” in the top right. This will let you access any applications that you have created keys for.

Examples

Below are example calls using cURL to show how to generate tokens under each grant type.

	Authorization Code

	Implicit

	Client Credentials

	Using the Access Token

	Using the Refresh Token

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

 	OAuth2 / Delegated Access

Authorization Code

The first step is to request the authorization from the user. This call will return a redirect to the login page.

Authorize Request:

curl -i -X GET -d "client_id=pekfaf6jxk6suyXXXXXXXXXX" --data-urlencode "redirect_uri=http://test.carvoyant.com/" -d "response_type=code" "https://auth.carvoyant.com/OAuth/authorize"

HTTP/1.1 302 Found
Content-Type: text/plain; charset=UTF-8
Date: Mon, 28 Apr 2014 14:03:51 GMT
Location: https://auth.carvoyant.com/login/auth
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=2D3C7E5AA412DF98124B8AC7121FEF7D; Path=/; Secure; HttpOnly
Content-Length: 0
Connection: keep-alive

If you did this through a browser, the login screen would appear to the user:

[image: ../_images/auth-dialog.png]
After logging in, the user will be redirected to the redirect_url specified in the authorization request with the authorization code appended to it. For the request above, the redirect uri would look like::

http://test.carvoyant.com/?code=v369uars628mgkXXXXXXXXXX

From this response, the server running at test.carvoyant.com would parse the authorization code and make a request to the token endpoint to read an actual access token. Note that this request requires the client id and secret key for the development partner to be passed as the Basic Authentication credentials.

Access Token Request:

curl -i --user pekfaf6jxk6suyXXXXXXXXXX:XXXXXXXXXX -d "grant_type=authorization_code" -d "code=v369uars628mgkXXXXXXXXXX" --data-urlencode "redirect_uri=http://test.carvoyant.com/" "https://api.carvoyant.com/oauth/token"

The response will include a json body with the access token information.

Access Token Response:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json;charset=UTF-8
Date: Mon, 28 Apr 2014 14:24:34 GMT
Server: Mashery Proxy
X-Mashery-Responder: prod-j-worker-us-east-1c-31.mashery.com
Content-Length: 161
Connection: keep-alive
{
 "token_type":"bearer",
 "mapi":"pekfaf6jxk6suyXXXXXXXXXX",
 "access_token":"dmnda67wbdnyayXXXXXXXXXX",
 "expires_in":86400,
 "refresh_token":"f2hqes6fpg37d2XXXXXXXXXX"
}

At this point, the development partners system would store the access token and refresh token and use them for future requests.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

 	OAuth2 / Delegated Access

Implicit

The first step is to request the authorization from the user. This call will return a redirect to the login page.

Authorize Request:

curl -i -X GET -d "client_id=pekfaf6jxk6suyXXXXXXXXXX" --data-urlencode "redirect_uri=http://test.carvoyant.com/" -d "response_type=token" "https://auth.carvoyant.com/OAuth/authorize"

HTTP/1.1 302 Found
Content-Type: text/plain; charset=UTF-8
Date: Mon, 28 Apr 2014 14:03:51 GMT
Location: https://auth.carvoyant.com/login/auth
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=2D3C7E5AA412DF98124B8AC7121FEF7D; Path=/; Secure; HttpOnly
Content-Length: 0
Connection: keep-alive

If you did this through a browser, the login screen would appear to the user:

[image: ../_images/auth-dialog.png]
After logging in, the user will be redirected to the redirect_url specified in the authorization request with the access token appended to it. For the request above, the redirect uri would look like::

http://test.carvoyant.com/?access_token=2pr9tvk3vgnr9aXXXXXXXXXX&token_type=bearer&expires_in=86400

From this response, the endpoint at test.carvoyant.com would parse the access token and begin making API calls.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

 	OAuth2 / Delegated Access

Client Credentials

In this grant type, there is no user interaction. The development partner requests a token for their client credentials directly.

Access Token Request:

curl -i --user pekfaf6jxk6suyXXXXXXXXXX:XXXXXXXXXX -d "grant_type=client_credentials" "https://api.carvoyant.com/oauth/token"

The response will include a json body with the access token information.

Access Token Response:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json;charset=UTF-8
Date: Mon, 28 Apr 2014 14:57:20 GMT
Server: Mashery Proxy
X-Mashery-Responder: prod-j-worker-us-east-1d-32.mashery.com
Content-Length: 161
Connection: keep-alive
{
 "token_type":"bearer",
 "mapi":"pekfaf6jxk6suyXXXXXXXXXX",
 "access_token":"n45u7eufgdmfysXXXXXXXXXX",
 "expires_in":86400,
 "refresh_token":"r9acw76k327g3cXXXXXXXXXX"
}

At this point, the development partners system would store the access token and refresh token and use them for future requests.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

 	OAuth2 / Delegated Access

Using the Access Token

In all grants types, once the access token has been retrieved, calls into the Carvoyant system are done by passing the access token in the HTTP request within the Authorization header. For example (using a sample access token from the Authorization Code grant type):

Request:

curl -i -H "Authorization: Bearer dmnda67wbdnyayXXXXXXXXXX" "https://api.carvoyant.com/v1/api/vehicle/"

Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Date: Mon, 28 Apr 2014 15:06:47 GMT
Server: Apache-Coyote/1.1
X-Mashery-Responder: prod-j-worker-us-east-1b-36.mashery.com
Content-Length: 1205
Connection: keep-alive
{"vehicle":[{"name":"1999 Jeep Wrangler SE","label":"Custom dune buggy","vehicleId":3,"deviceId":"C201200001","vin":"1J4FY29P7XP442798","mileage":160854.0,"lastWaypoint":{"timestamp":"20140428T144739+0000","latitude":28.036441,"longitude":-82.593687},"running":false,"lastRunningTimestamp":"20140428T113035+0000"},{"name":"Unidentified Vehicle","label":null,"vehicleId":4,"deviceId":null,"vin":null,"mileage":162151.0,"lastWaypoint":{"timestamp":"20131112T231526+0000","latitude":28.036473,"longitude":-82.593671},"running":false,"lastRunningTimestamp":"20131110T190222+0000"},{"name":"2000 Chevrolet Corvette Hardtop","label":null,"vehicleId":123,"deviceId":"4562001045","vin":"1G1YY22G2Y5108919","mileage":111940.0,"lastWaypoint":{"timestamp":"20140428T143141+0000","latitude":28.088404,"longitude":-82.578463},"running":false,"lastRunningTimestamp":"20140428T123141+0000"},{"name":"2013 Subaru XV Crosstrek Limited","label":null,"vehicleId":284,"deviceId":"C201200002","vin":"JF2GPAKC5D2889395","mileage":9156.0,"lastWaypoint":{"timestamp":"20140428T142731+0000","latitude":27.991497,"longitude":-82.406288},"running":false,"lastRunningTimestamp":"20140428T111028+0000"}],"totalRecords":4,"actions":[]}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

 	OAuth2 / Delegated Access

Using the Refresh Token

When using the Authorization Code grant type, you will receive a refresh token in addition to the access token. Any time up until the expiration of the refresh token (currently 30 days past the access token expiration), you can generate a new access token without requiring the user to go through the authorization process.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Getting Started

Access & Registration Workflows

When a partner creates an application for the Carvoyant platform, it is necessary to handle two different user scenarios. In the first scenario, the end user does not already have a Carvoyant account and needs to be registered with the Carvoyant platform. In the second scenario, the user already has a Carvoyant account and simply wants to connect the partners application to their account. This poses some questions regarding how the Carvoyant account is created (when necessary), how Carvoyant validates that the user has granted access to the partner application and how the partner uses that access. If you are not already familiar with the OAuth mechanism used in the Carvoyant Platform, please read that first.

Scenario 1 - New Carvoyant Account

In many cases, our partners will be bringing on new Carvoyant users to our platform as a part of their application. Perhaps you are creating a brand new connected car application. Or maybe you’re simply adding connected car features to your existing application. In either case, it is necessary to create the Carvoyant user account. This can be done two ways. First, you can just treat the “new” and “existing” customers the exact same way. You simply prompt them to authorize Carvoyant to access their account and then take them to our authentication server as outlined in our OAuth documentation. If you want to use this method, please see Scenario 2.

If you don’t want to require the user to go through the Carvoyant UI for account creation, you can simply call the account creation API endpoint in our system. You will need to pass over all of the required fields for a new account. The response to the account creation call will include an authorization code. That code can then be used to programmatically generate the access token. An example request flow looks like this:

Account Creation Request:

curl -X POST -H 'Authorization: Bearer m7dwthfgv9dvdpxXXXXXXXXX' -H 'Content-Type: application/json' https://sandbox-api.carvoyant.com/sandbox/api/account/ -d '{"firstName": "Doc","lastName": "Test","email": "matt@carvoyant.com","username": "doctest","password": "doctestpassword"}'

Account Creation Response:

{
 "account":{
 "id":166,
 "firstName":"Doc",
 "lastName":"Test",
 "username":null,
 "dateCreated":"20141112T195503+0000",
 "email":"matt@carvoyant.com",
 "zipcode":null,
 "phone":null,
 "timeZone":null,
 "preferredContact":null,
 "accessToken":{
 "code":"dj6fpxdbkh3xqyXXXXXXXXXX"
 }
 },
 "totalRecords":1
}

Note the accessToken.code in the response.

Now lets get the access token:

Access Token Request:

curl --user r6dwmz2zxkqms7sac2r8mdqa:XXXXXXXXXX -d "grant_type=authorization_i=https://test.carvoyant.com" "https://sandbox-api.carvoyant.com/sandbox/oauth/token"

Access Token Response:

{
 "access_token":"6dpmu7c4gv3s3yXXXXXXXXXX",
 "token_type":"bearer",
 "expires_in":86400,
 "refresh_token":"z9h69fqx4cdkfjXXXXXXXXXX"
}

Now you’ve successfully registered a new Carvoyant account and generated an access token into the API for that user without requiring the user manually log in.

Note

Accounts created in this way make it very easy for the end user to misunderstand who is collecting their data and who is storing it. If you are generating accounts and access tokens for Carvoyant users in this manner, you must notify them of the following:

	Their Carvoyant user credentials (ie, the username and password that was passed in to the account creation).

	A link to https://driver.carvoyant.com where the user can access their Carvoyant account.

	A clear statement that their connected car data is being collected on their behalf by Carvoyant and made available to you, our partner.

If there are any questions about this, please contact us: contact us.

Scenario 2 - Existing Carvoyant User (or using the Carvoyant new account UI)

As the Carvoyant user base grows, connected users are going to want to connect more and more applications to their connected car. In order to do this, application providers need to allow those users to authorize the partner’s application to the user’s Carvoyant account. This is done by using our authorization server. Note that this process is also outlined on our OAuth2 / Delegated Access documentation.

When the you are ready to have your user authorize you to their Carvoyant account, you simply open a browser and redirect them to our authorization page. The URL looks like this::

https://sandbox-auth.carvoyant.com/OAuth/authorize?client_id=r6dwmz2zxkqms7XXXXXXXXXX&redirect_uri=https%3A%2F%2Ftest.carvoyant.com&response_type=token

Replace the client_id with your applications client_id and the redirect_uri with the URL that you will listen on for the response. The user will be presented with a screen like this:

[image: ../_images/auth-dialog.png]
Note that the user can log in with their existing credentials or they can register a new one right there. From a partner’s perspective, you can simply provide a “Connect Carvoyant” action and this will solve the integration for both new Carvoyant users and already existing Carvoyant users. After the user logs in and authorizes access, they will be redirected back to the URL you specified in the redirect_uri parameter and it will include the authorization code. The URL will look like this::

https://test.carvoyant.com?code=dj6fpxdbkh3xqyXXXXXXXXXX

The code query parameter in that URL is the authorization code that is used to request the access token. That process is identical to what is outlined above. Note that this example is using the authorization code grant type. The same process can be followed for the implicit grant type.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

API Overview

The Carvoyant API is a RESTful web API that allows our customers and partners to access Carvoyant data programmatically. All API calls must be made over SSL and access into the system is controlled by an OAuth2 implementation. The URI to access the API is https://api.carvoyant.com/v1/api. Every request is expected to include the Authorization header containing the bearer token generated through one of the OAuth2 grant types. See OAuth2 / Delegated Access for details on how to request an access token.

In following along with the standard approach for a RESTful service, our API is structured in terms of it’s Resources. So you won’t see “actions” listed in here. Instead, you will find the information organized in terms of the resources that the Carvoyant API exposes. For each resource, you will find a description of the object as well as the various requests that can be made against it (ie, GET, PUT, POST, DELETE).

	JSON Success Response Format

	JSON Error Response Format

	HTTP Verbs

	Sorting and Paging
	Sorting

	Paging

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Overview

JSON Success Response Format

Responses from the Carvoyant system will follow a common structure for all API calls. The general format will be::

{
 "<object name>":
 [
 {<object 1>},
 {<object 2>},
 {<object 3>}
],
 "totalRecords": <total records>,
 "actions":
 [
 {
 "name": "<action1 name>",
 "uri": "<action1 uri>"
 },
 {
 "name": "<action2 name>",
 "uri": "<action2 uri>"
 },
]
}

<object name> will be defined by the specific API call that is made. In cases where a list is returned, the object value will be an array. If a single object is returned then the object value will just be the object (it will not be a single element array). The “actions” array will include any subsequent API calls that can be made related to the returned object (this is our first pass at implementing HATEOAS [https://en.wikipedia.org/wiki/HATEOAS]). We decided to standardize the payload format rather then rely on something like the HTTP Link header for passing back available actions.

Note that the totalRecords property will only be present when the object returned is a list. The value of totalRecords will be the total count of records contained within the Carvoyant system. It will not be the number of records returned in the response. This will be useful with returned data that is paged. For instance, the system might have 115 records stored but the pagination parameters may only return 20 records in this particular response. In that scenario, the totalRecords value will be 115.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Overview

JSON Error Response Format

API calls that result in an error will have a different format than successful message. The first difference is that the HTTP response code will not be 200. It will be an HTTP code more reflective of the error encountered. For example, a 404 will be returned if a resource that does not exist is requested. The body of the response will contain the following JSON response format::

{
 "error":
 {
 "httpStatus": <http status code>,
 "detail": "<string message>"
 }
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Overview

HTTP Verbs

One of the recurring areas of confusion around APIs that strive to be RESTful has to do with the mapping of HTTP verbs to actual server side actions. Here are some guidelines for how the Carvoyant API handles the various verbs for different resource types.

	Verb
	Container (e.g. /vehicle)
	Entity (e.g. /vehicle/{id})

	GET
	Returns a list of all entities in the container.
	Returns the specified entity.

	PUT
	Currently not supported for any container type. In practice, this would
replace the entire container with the entities specified in the request.
	Replaces the specified entity.

	POST
	Creates a new entity within the container.
	Updates the specified entity. Only data elements included in
the request will be updated. Non-specifiied fields will not be changed.

	DELETE
	Currently not supported for any container type. In practice, this would
delete all entities in the container.
	Deletes the specified entity.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Overview

Sorting and Paging

Many of the calls within the Carvoyant API return sets of data. In some cases, very large sets of data. For a number of reasons, it would not be feasible return the entire data set at once (we have some vehicles with over 100,000 data points after only 4-5 months of being on our system). In order to address this, we have standardized the mechanism to sort and page results. Any API call that supports sorting or pagination will do so as described here.

Sorting

In most cases, the objects being listed will sort based on a timesamp. It might be the time that the trip was started or the time a data point was collected. The documentation for the individual API call will indicate how the results are sorted. In order to control the sort order of that field, you can include the following field in your query string:

sortOrder=asc will return the results in ascending order

sortOrder=desc will return the results in descending order

Paging

Paging is the mechanism by which the number of results returned are limited and the ability to retrieve the “next” set of data in the list. There are two pieces of data important in specifying a paging mechanism. The size of the data set returned and the starting point in the full data set where the returned results will begin.

searchLimit=<x> will specify how many results are included in the response

searchOffset=<y> will specify the offset from the beginning of the data set that is returned

Generally, you will not need to figure out the values for the paging links manually. They will be specified in the actions array of the return as “next” and “previous”.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

API Reference

	Data Types
	DataKey

	DateTime

	NotificationPeriod

	Waypoint

	EventType
	Geo Fence

	Ignition Status

	Low Battery

	Numeric Data Keys

	Time Of Day

	Trouble Code

	Driver Behaviors

	Vehicle Events

	Vehicle Creation

	Account Authorization

	DeliveryType
	HTTP_POST

	EMAIL

	Resources
	Account
	GET

	POST

	DELETE

	Vehicle
	GET

	POST

	DELETE

	Trip
	GET

	DataSet
	GET

	POST

	DataPoint
	GET

	EventSubscription
	GET

	POST

	DELETE

	EventNotification
	GET

	Test EventSubscription
	GET

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

Data Types

There are several defined data types beyond the normal primatives that are used within the Carvoyant API. They are described here.

	DataKey

	DateTime

	NotificationPeriod

	Waypoint

	EventType
	Geo Fence

	Ignition Status

	Low Battery

	Numeric Data Keys

	Time Of Day

	Trouble Code

	Driver Behaviors

	Vehicle Events

	Vehicle Creation

	Account Authorization

	DeliveryType
	HTTP_POST
	OAUTH2

	EMAIL

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

DataKey

A DataKey is a string that represents a type of data in the Carvoyant system.

	Key String
	Description

	GEN_DTC
	Diagnostic Trouble Codes

	GEN_VOLTAGE
	Battery Voltage

	GEN_TRIP_MILEAGE
	Trip Mileage (calculate from ignition on to ignition off via GPS)

	GEN_ODOMETER
	Vehicle Reported Odometer

	GEN_WAYPOINT
	GPS Location

	GEN_HEADING
	Heading (degrees clockwise from due north)

	GEN_RPM
	Engine Speed

	GEN_FUELLEVEL
	Percentage of Fuel Remaining

	GEN_FUELRATE
	Rate of Fuel Consumption

	GEN_ENGINE_COOLANT_TEMP
	Engine Temperature

	GEN_SPEED
	Maximum Speed Recorded (since the previous reading)

	GEN_NEAREST_ADDRESS
	The physical address nearest to the associated Waypoint

	VEHICLE_EVENT_CONNECTED
	Vehicle device was connected

	VEHICLE_EVENT_DISCONNECTED
	Vehicle device was disconnected

	VEHICLE_EVENT_TOWED
	Towing has been detected

	VEHICLE_EVENT_TOWED_BREADCRUMB
	A breadcrumb indicating the vehicle is being towed

	VEHICLE_EVENT_HARSH_ACCEL
	Harsh acceleration

	VEHICLE_EVENT_HARSH_DECEL
	Harsh deceleration

	VEHICLE_EVENT_HARSH_RIGHT
	Harsh right turn

	VEHICLE_EVENT_HARSH_LEFT
	Harsh left turn

	VEHICLE_EVENT_HARSH_IMPACT
	Impact has been detected

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

DateTime

All timestamps will be returned in the ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] standard format (yyyyMMddTHHmmssZ).

	yyyy : 4 digit year

	MM : 2 digit month

	dd : 2 digit day

	HH : hour (on a 24 hour scale)

	mm : minutes

	ss : seconds

	Z : timezone offset

Implementations should honor the timezone but in most cases all timestamps will be returned in UTC with a timezone offset of +0000 (we expect and use the +0000 offset for UTC rather than the Z shorthand that the spec provides for).

For example, the string 20130526T204840+0000 denotes May 26, 2013 at 8:48 and 40 seconds, PM, in UTC.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

NotificationPeriod

NotificationPeriod is a string that represents when EventNotifications are sent from the Carvoyant system.

	Key String
	Description

	CONTINUOUS
	Every time a data point is collected and the EventSubscription criteria is met, an EventNotification
will be sent. When the criteria is no longer met, an EventNotification will NOT be sent.

	STATECHANGE
	An EventNotification will be sent when the EventSubscription criteria is first met. Another EventNotification
will be sent when the criteria is no longer met.

	INITIALSTATE
	An EventNotification will be sent when the EventSubscription criteria is first met. Another EventNotification
will not be sent until the criteria is no longer met, and then is met again.

	ONETIME
	An EventNotification will be sent when the EventSubscription criteria is first met and the EventSubscription
will be deleted. No further event EventNotifications will be sent.

Here’s a chart to help visualize when event notifications are sent for each state:

[image: ../../_images/notificationperiod.png]

Note

Not all NotificationPeriod values will be supported for every EventNotification

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

Waypoint

A waypoint is a GPS location at a specific point in time.

Properties

	Property Name
	Type
	Description
	Optional

	timestamp
	DateTime
	The time that the location was recorded
	N

	latitude
	Float
	The latitude of the location
	N

	longitude
	Float
	The longitude of the location
	N

JSON Sample:

{
 "timestamp":"20140116T152440+0000",
 "latitude":28.088445,
 "longitude":-82.578451
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

EventType

An EventType represents and event that can be triggered within the Carvoyant system. API users can subscribe to these events using an EventSubscription. This page describes the details of each event type. In the details below you will find the following:

	Event Scope: Events can be set at the system, account or vehicle scope.

	Scope
	Description
	Query Path Prefixes

	System
	These subscriptions are created using the Client Credentials mechanism and are not account specific. They allow you to subscribe to system level events.
	/system

	Account
	These subscriptions are applicable to the account that the access token applies to.
	/account

	Vehicle
	These subscriptions are applicable to a specific vehicle. They can be specified at the account level in which case the Carvoyant system will ensure that all vehicles on your account have the subscription created for it.
	/account
/vehicle

	Event Type Key: This is the string that will be used in EventSubscription and EventNotification objects wherever you see {event-type}.

	Subscription Properties: This will be the list of propertis that are specified when the subscription is created.

	Supported Notification Periods: This will list which NotificationPeriod values are supported for the event type.

Geo Fence

GeoFence events will trigger when a vehicles location is reported at a certain location. This is evaluated any time a Waypoint is received by the system.

Scope: Vehicle

Event Type Key: GEOFENCE

Subscription Properties

	Name
	Type
	Description
	Required for Creation

	origin
	Waypoint
	The reference location on which to base event notification
	Required

	radius
	Float
	The length of the radius extending outward from the origin that creates the
GeoFence boundary. This is specified in miles.
	Required

	ignitionStatus
	String Enumeration:
ON
OFF
RUNNING
ANY
	Defines the required ignition state of the vehicle that must be met in order
for the event notification to occur.
	Required

	boundaryCondition
	String Enumeration:
INSIDE
OUTSIDE
	Specifies whether to trigger the event notification if the vehicle is “INSIDE”
or “OUTSIDE” of the defined boundary.
	Required

Supported Notification Periods

	CONTINUOUS

	STATECHANGE

	INITIALSTATE

	ONETIME

Ignition Status

Ignition status events will trigger when a vehicles engine state (ie, ignition state) is turned on or off.

Scope: Vehicle

Event Type Key: IGNITIONSTATUS

Subscription Properties: No additional properties

Supported Notification Periods

	STATECHANGE

	INITIALSTATE

	ONETIME

Low Battery

The low battery event will trigger when the voltage read from the vehicle falls below 12.0V. For other values, see the Numeric Data Keys event type.

Scope: Vehicle

Event Type Key: LOWBATTERY

Subscription Properties: No additional properties

Supported Notification Periods

	CONTINUOUS

	STATECHANGE

	INITIALSTATE

	ONETIME

Numeric Data Keys

Numeric data key events will trigger when the value of the specified DataKey meets the criteria. This can be used to customize events off of any numerical data point collected by Carvoyant.

Scope: Vehicle

Event Type Key: NUMERICDATAKEY

Subscription Properties

	Name
	Type
	Description
	Required for Creation

	dataKey
	DataKey
	The DataKey to check against. Note that the following keys are supported:
GEN_VOLTAGE, GEN_TRIP_MILEAGE, GEN_ODOMETER, GEN_HEADING, GEN_RPM, GEN_FUELLEVEL,
GEN_FUELRATE, GEN_ENGINE_COOLANT_TEMP, GEN_SPEED
	Required

	thresholdValue
	Float
	The value that determines when to send the event notification in reference
to the corresponding vehicle data.
	Required

	relationship
	String:
ABOVE
BELOW
EQUALTO
	Defines the condition that is used to compare the value of the subscription
against current vehicle data.
	Required

Supported Notification Periods

	CONTINUOUS

	STATECHANGE

	INITIALSTATE

	ONETIME

Time Of Day

The TimeOfDay Subscription allows event notification when a vehicle is operated outside of a defined time period.

Scope: Vehicle

Event Type Key: TIMEOFDAY

Subscription Properties

	Name
	Type
	Description
	Required for Creation

	startTime
	String in
HH:MM format
	The time of day that the vehicle is permitted to run.
	Required

	endTime
	String in
HH:MM format
	The time of day when the vehicle is no longer permitted to run.
	Required

	daysOfWeek
	Array of String Enumeration:
SUN, MON, TUE, WED, THU,
FRI, SAT, SUN
	Represents the days of the week that the vehicle is permitted to run.
	Required

	ignitionStatus
	String Enumeration:
ON
OFF
RUNNING
ANY
	Defines the required ignition state of the vehicle that must be met in order
for the event notification to occur.
	Required

Supported Notification Periods

	CONTINUOUS

	STATECHANGE

	INITIALSTATE

	ONETIME

Trouble Code

The trouble code event will trigger when the vehicle reports a Diagnostic Trouble Code (DTC).

Scope: Vehicle

Event Type Key: TROUBLECODE

Subscription Properties: No additional properties

Supported Notification Periods

	INITIALSTATE

	ONETIME

Driver Behaviors

Driver behavior events trigger based on how the driver is driving. Each are determined using an internal accelerometer within the device in the vehicle.

Scope: Vehicle

	Event Type Keys:

	
	VEHICLEHARSHACCEL: Indicates that a high rate of acceleration has been detected.

	VEHICLEHARSHDECEL: Indicates that a high rate of deceleration has been detected.

	VEHICLEHARSHRIGHT: Indicates that a hard right turn has been detected.

	VEHICLEHARSHLEFT: Indicates that a hard left turn has been detected.

	VEHICLEIMPACT: Indicates that an impact has been detected. Please note that currently, the act of plugging in or unplugging a device to the OBDII port while the vehicle is on may trigger this event.

Note

Driver behavior events will only be triggered while the vehicle is running. Specifically, this means that an impact that takes place while
the vehicle is not running will not trigger an alert.

Subscription Properties: No additional properties

Supported Notification Periods

	INITIALSTATE

	ONETIME

Vehicle Events

Vehicle events are generally related to events that occur with the vehicle that do not have to do with driving activities.

Scope: Vehicle

	Event Type Keys:

	
	VEHICLECONNECTED: Indicates that connectivity to the car has been established. For OBDII based cars, this means the device has been plugged in.

	VEHICLEDISCONNECTED: Indicates that connectivity to the car has been removed. For OBDII based cars, this means the device has been unplugged.

	VEHICLETOWED: Indicates that the vehicle is being towed. Specifically, this means the vehicle has moved a certain distance (currently 1500 meters) without the vehicle being turned on.

Note

VEHICLETOWED will be triggered if the device is unplugged and then plugged back in after moving the configured distance. If a device is unplugged
and then plugged back in that distance away, the vehicle should be started. That will clear the towing indicator on the device.

Subscription Properties: No additional properties

Supported Notification Periods

	INITIALSTATE

	ONETIME

Vehicle Creation

These events allow you to react to the creation or deletion of a vehicle on an account.

Scope: Account

	Event Type Keys:

	
	VEHICLECREATED: Indicates that the vehicle has been created in the system.

	VEHICLEDELETED: Indicates that the vehicle has been deleted from the system. Note that after receiving a notification that the vehicle has been deleted, you can no longer query against it.

Subscription Properties: No additional properties

Supported Notification Periods

	ONETIME

	CONTINUOUS

Account Authorization

This event will notify you of the change in access grants to an account for your client id. At this time, only revoke notifications will be sent.

Scope: System

Event Type Key:

	AUTHORIZATIONSTATUS: Indicates that the authorization status for the account has changed.

Subscription Properties: No additional properties

Supported Notification Periods

	ONETIME

	CONTINUOUS

Notification Properties

	Name
	Type
	Description

	authorizationStatus
	String Enumeration
GRANTED, REVOKED
	The time of day that the vehicle is permitted to run.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Data Types

DeliveryType

A DeliveryType represents how a notification should be sent when the subscription criteria is met. The following types are supported:

	HTTP_POST

	EMAIL

DeliveryType Properties

	Name
	Type
	Description
	Required for Creation

	type
	POST_HTTP or EMAIL
	The type of delivery.
	Required

	active
	boolean
	Indicates if the DeliveryType is currently active. This can only be set by the
Carvoyant system (it cannot be set through the API)
	Unsupported

	deactivationReason
	String
	If the system deactivates this DeliveryType, this field will indicate why.
	Unsupported

HTTP_POST

This DeliveryType will uses HTTP POST to submit the EventNotification the specified URL.

HTTP_POST Properties

	Name
	Type
	Description
	Required for Creation

	postUrl
	String
	The URL that will receive HTTPS POST notifications from the newly generated subscription. Note that only
HTTPS endpoints are supported. The certificate protecting the post URL must be a valid signed certificate.
	Required

	postHeaders
	Map
	A map that contains any headers that should be sent to the postUrl when a notification is generated.
	Optional

	oauth2
	Map
	A map that contains the values for OAuth2 based authentication of notifications endpoints.
	Optional

OAUTH2

A DeliveryType can use OAuth2 as an authentication mechanism when sending the HTTP_POST. The following fields are required as a part of the oauth2 map.

OAUTH2 Properties

	Name
	Type
	Description
	Required for Creation

	access_token
	String
	The access token to be included in the request.
	Required

	client_id
	String
	The OAuth2 client id in the receiving system.
	Required

	client_secret
	String
	The OAuth2 client secret in the receiving system.
	Required

	refresh_token
	String
	The OAuth2 refresh token for this access token. If a 401 is returned from a notification request
the Carvoyant system will attempt to refresh the token. This will follow the format in the OAuth2 specification.
	Required

	redirect_uri
	String
	The URI to use when refreshing a token.
	Required

When a notification is delivered using OAuth2, the initial HTTP_POST to the postUrl will contain an authorization header with the value “Bearer <access_token>”.
If the delivery returns an HTTP status of 401 (Unauthorized), the Carvoyant system will attempt to refresh the token. A request will be sent to the redirect_uri
following the OAuth2 [http://tools.ietf.org/html/draft-ietf-oauth-v2-20#page-40] refresh token specification. The request will use an http POST and will look like the following:

<redirect_uri>?grant_type=refresh_token&client_id=<client_id>&client_secret=<client_secret>&refresh_token=<refresh_token>

The expected response will be a JSON object that contains the properties “access_token” and “refresh_token”. Those values will update the delivery object and the notification
will be retried.

EMAIL

This DeliveryType will send an email with the details of the EventNotification .

EMAIL Properties

	Name
	Type
	Description
	Required for Creation

	recipient
	String
	The email address to send the notificaation to.
	Required

	subscriberSubject
	String
	The subject of the notification email.
	Optional

	subscriberContent
	String
	The body of the notification email.
	Optional

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

Resources

A resource is an addressable object within the Carvoyant API. These are the primary objects within the Carvoyant system.

	Account
	GET

	POST

	DELETE

	Vehicle
	GET

	POST

	DELETE

	Trip
	GET

	DataSet
	GET

	POST

	DataPoint
	GET

	EventSubscription
	GET

	POST

	DELETE

	EventNotification
	GET

	Test EventSubscription
	GET

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

Account

The Account object represents a unique account within the Carvoyant system.

Properties

	Property
	Type
	Description
	Required for Creation

	id
	Integer
	The internal system identifier for this vehicle.
	Unsupported

	firstName
	String
	The first name on the account.
	Required

	lastName
	String
	The last name on the account.
	Required

	dateCreated
	DateTime
	The timestamp of when the account was created.
	Unsupported

	zipcode
	String
	The zipcode where the user primarily drives.
	Required

	email
	String
	Email address for the account.
	Optional

	phone
	String
	Phone number for the account.
	Optional

	timeZone
	String
	The timezone to use for time display.
	Required

	preferredContact
	String
	How the account owner prefers to be contacted.
	Required

	accessToken
	String
	A Bearer access token to use to access this account. Note that an access token is only
returned by the creation of a new account.
	Unsupported

	username
	String
	The username for the account.
	Required

	password
	String
	The password for the account.
	Required

Supported Verbs

	GET

	POST

	DELETE

GET

Returns one or more accounts.

Query Paths

	/account/

	/account/{account-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. If the account-id is not specified, then all accounts
available will be returned. In most cases, only one account is available so both calls
will return the same account.

Call Options

	Sortable
	No

	Pageable
	No

Sample JSON Response:

{
 "account": {
 "id: 3
 "firstName": "Speed"
 "lastName": "Racer"
 "username": "speedracer"
 "dateCreated": "20121130T144013+0000"
 "email": "speedracer@noemail.com"
 "zipcode": "33635"
 "phone": "8135551212"
 "timeZone": "America/New_York"
 "preferredContact": "PHONE"
 }
 totalRecords: null
 actions: []
}

POST

Creates or updates an account. Note that the client credentials authentication mechanism must be used for account creation. User account access tokens are not authorized to create new accounts. In the response to the creation of a new response, an OAuth2 authorization code will be provided. The calling system can use that authorization code to retrieve an access token for the new account without required the user to explicitly grant access (creating the account assumes access has been granted).

Query Paths

	/account/

	/account/{account-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. If the account-id is not specified, a new account will be created.
If it is specified, then any account fields specified in the request will be updated. Unspecified fields will
remain unchanged.

Sample JSON Response:

{
 account: {
 id: 87
 firstName: "Speed"
 lastName: "Racer"
 username: null
 dateCreated: "20140505T173906+0000"
 email: "matt@carvoyant.com"
 zipcode: "33635"
 phone: null
 timeZone: null
 preferredContact: "EMAIL"
 accessToken: {
 code: "2f2w4ae6mmbvrdk94feen2gy"
 }
 }
 totalRecords: null
 actions: []
}

DELETE

Deletes the specified account.

Warning

This operation is permanent! All data and configuration for the account, including all of it’s vehicles will be deleted and
cannot be restored. Please ensure that the Carvoyant account owner confirms this operation before making the API call.

Query Paths

	/account/{account-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account.

Sample JSON Response:

{
 "result": "OK",
 "totalRecords": 1,
 "actions": []
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

Vehicle

The Vehicle object represents a unique vehicle within the Carvoyant system. All data with a drivers car/truck is associated with this object.

Properties

	Property
	Type
	Description
	Required for Creation

	name
	String
	The text representation of the vehicle type. For instance, “2010 Jeep Wrangler”. If the vehicle
type is not known, the value of this property will be “Unidentified Vehicle”
	Unsupported

	vehicleId
	Integer
	The internal system identifier for this vehicle.
	Unsupported

	deviceId
	String
	The serial number for the Carvoyant device installed in this vehicle.
	Optional

	vin
	String
	The Vehicle Identifier Number. Will be null if the vehicle is currently unidentified.
	Optional

	label
	String
	A user specified short description for the vehicle.
	Optional

	autoAssignDevice
	Boolean
	Indicates whether the system can automatically reassign devices to or from this vehicle.
Defaults to true.
	Optional

	mileage
	Integer
	The current odometer reading of the vehicle.
	Optional

	lastWaypoint
	Waypoint
	The last known geographic location of the vehicle.
	Unsupported

	running
	Boolean
	Whether the vehicle is currently running.
	Unsupported

	lastRunningTimestamp
	DateTime
	The time that the vehicle was last running.
	Unsupported

	year
	String
	The Year the vehicle was made.
	Unsupported

	make
	String
	The make of the vehicle.
	Unsupported

	model
	String
	The model of the vehicle.
	Unsupported

Supported Verbs

	GET

	POST

	DELETE

GET

Returns one or more vehicles. By default, the first 50 results are returned.

Query Paths

	/vehicle/

	/vehicle/{vehicle-id}

Query Parameters

	Parameter
	Description

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. If the vehicle-id is not
specified, then all vehicles available will be returned.

Call Options

	Sortable
	No

	Pageable
	No

Sample JSON Response:

{
 "vehicle": {
 "name": "1999 Jeep Wrangler",
 "vehicleId": 3,
 "deviceId": "C201200001",
 "vin": "12345678912345678",
 "label": "Custom dune buggy",
 "mileage": 159774,
 "lastWaypoint": {
 "timestamp": "20140116T152440+0000",
 "latitude": 28.088505,
 "longitude": -82.578467
 },
 "running": false,
 "lastRunningTimestamp": "20140116T151952+0000",
 "year": "1999",
 "make": "Jeep",
 "model": "Wrangler
 },
 "totalRecords": null,
 "actions": []
}

POST

Creates or updates a vehicle.

Query Paths

	/vehicle/

	/vehicle/{vehicle-id}

Query Parameters

	Parameter
	Description

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car
(for example, C201200001) or it could be the internal id returned from a previous lookup. If
the vehicle-id is not specified, a new vehicle will be created. If it is specified, then any
vehicle fields specified in the request will be updated. Unspecified fields will remain unchanged.

DELETE

Deletes the specified vehicle.

Warning

This operation is permanent! All data and configuration for the vehicle will be deleted and cannot be restored. Please ensure
that the Carvoyant account owner confirms this operation before making the API call.

Query Paths

	/vehicle/{vehicle-id}

Query Parameters

	Parameter
	Description

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup.

Sample JSON Response:

{
 "result": "OK",
 "totalRecords": 1,
 "actions": []
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

Trip

This resource represents a Trip within the Carvoyant system. A Trip is defined as the activity of a Vehicle between ignition on and ignition off.

Properties

	Property
	Type
	Description

	id
	Integer
	The internal system identifier for this trip.

	startTime
	DateTime
	The start time of the trip.

	endTime
	DateTime
	The end time of the trip if the trip is not in progress.

	mileage
	Float
	The distance traveled during the trip.

	startWaypoint
	Waypoint
	The starting location of the trip.

	endWaypoint
	Waypoint
	The ending location of the trip if the trip is in not progress.

	data
	DataSet Array
	An array of data sets collected during the trip.

Supported Verbs

	GET

GET

Returns one or more trips for the specified vehicle. By default, the first 50 results are returned.

Query Paths

	/vehicle/{vehicle-id}/trip/?includeData={true|false}&startTime={startTime}&endTime={endTime}

	/vehicle/{vehicle-id}/trip/{trip-id}

Query Parameters

	Parameter
	Description

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. If the vehicle-id is not specified,
then all vehicles available will be returned.

	includeData
	If true, then the results will include all of the DataSets collected during that trip. If false, the trip
object will not contain the datum property. Only applies if no trip-id is specified.

	startTime
	Used for filtering the results. Only trips that started after this time are returned. See DateTime for the
format details. Only applies if no trip-id is specified.

	endTime
	Used for filtering the results. Only trips that started before this time are returned. See DateTime for the
format details. Only applies if no trip-id is specified.

	trip-id
	The Carvoyant identifier for the trip.

Call Options

	Sortable
	Yes (by startTime)

	Pageable
	Yes (when no trip-id is specified. Individual trip requests are not paginated)

Sample JSON Response (trip list):

{
 "trip": [
 {
 "id": 198260,
 "startTime": "20140116T122340+0000",
 "endTime": "20140116T124904+0000",
 "mileage": 0.5,
 "startWaypoint": {
 "timestamp": "20140116T122340+0000",
 "latitude": 28.036539,
 "longitude": -82.593698
 },
 "endWaypoint": {
 "timestamp": "20140116T124904+0000",
 "latitude": 28.036482,
 "longitude": -82.593697
 }
 },
 {
 "id": 197923,
 "startTime": "20140115T230536+0000",
 "endTime": "20140115T231845+0000",
 "mileage": 5.9,
 "startWaypoint": {
 "timestamp": "20140115T230536+0000",
 "latitude": 28.088446,
 "longitude": -82.578471
 },
 "endWaypoint": {
 "timestamp": "20140115T231845+0000",
 "latitude": 28.036513,
 "longitude": -82.593683
 }
 }
],
 "totalRecords": 850,
 "actions": [
 {
 "name": "next",
 "uri": "https://api.carvoyant.com/v1/api/vehicle/C201200001/trip/?includeData=false&sortOrder=desc&startTime=20130627T090000%2B0000&searchOffset=4&searchLimit=2",
 "methods": null,
 "inputs": null
 },
 {
 "name": "previous",
 "uri": "https://api.carvoyant.com/v1/api/vehicle/C201200001/trip/?includeData=false&sortOrder=desc&startTime=20130627T090000%2B0000&searchLimit=2",
 "methods": null,
 "inputs": null
 }
]
}

Sample JSON Response (single trip):

{
 "trip": {
 "id": 198260,
 "startTime": "20140116T122340+0000",
 "endTime": "20140116T124904+0000",
 "mileage": 0.5,
 "startWaypoint": {
 "timestamp": "20140116T122340+0000",
 "latitude": 28.036539,
 "longitude": -82.593698
 },
 "endWaypoint": {
 "timestamp": "20140116T124904+0000",
 "latitude": 28.036482,
 "longitude": -82.593697
 },
 "data": [
 {
 "id": 2080099,
 "timestamp": "20140116T124904+0000",
 "datum": [
 {
 "id": 8713037,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_TRIP_MILEAGE",
 "value": "0.5",
 "translatedValue": "1 miles"
 },
 {
 "id": 8713036,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "81.6",
 "translatedValue": "204.5 deg F"
 },
 {
 "id": 8713035,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8713034,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_SPEED",
 "value": "17.0",
 "translatedValue": "17.0 mph"
 },
 {
 "id": 8713033,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_HEADING",
 "value": "148",
 "translatedValue": "148 deg"
 },
 {
 "id": 8713032,
 "timestamp": "20140116T124904+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.036482,-82.593697",
 "translatedValue": "28.036482,-82.593697"
 }
]
 },
 {
 "id": 2080093,
 "timestamp": "20140116T124839+0000",
 "datum": [
 {
 "id": 8713013,
 "timestamp": "20140116T124839+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "82.8",
 "translatedValue": "206.6 deg F"
 },
 {
 "id": 8713012,
 "timestamp": "20140116T124839+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8713011,
 "timestamp": "20140116T124839+0000",
 "key": "GEN_SPEED",
 "value": "27.6",
 "translatedValue": "27.6 mph"
 },
 {
 "id": 8713010,
 "timestamp": "20140116T124839+0000",
 "key": "GEN_HEADING",
 "value": "81",
 "translatedValue": "81 deg"
 },
 {
 "id": 8713009,
 "timestamp": "20140116T124839+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037042,-82.594338",
 "translatedValue": "28.037042,-82.594338"
 }
]
 },
 {
 "id": 2080083,
 "timestamp": "20140116T124739+0000",
 "datum": [
 {
 "id": 8712961,
 "timestamp": "20140116T124739+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "80.0",
 "translatedValue": "201.6 deg F"
 },
 {
 "id": 8712960,
 "timestamp": "20140116T124739+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712959,
 "timestamp": "20140116T124739+0000",
 "key": "GEN_HEADING",
 "value": "333",
 "translatedValue": "333 deg"
 },
 {
 "id": 8712958,
 "timestamp": "20140116T124739+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037880,-82.596209",
 "translatedValue": "28.037880,-82.596209"
 }
]
 },
 {
 "id": 2080073,
 "timestamp": "20140116T124639+0000",
 "datum": [
 {
 "id": 8712912,
 "timestamp": "20140116T124639+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712911,
 "timestamp": "20140116T124639+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712910,
 "timestamp": "20140116T124639+0000",
 "key": "GEN_HEADING",
 "value": "333",
 "translatedValue": "333 deg"
 },
 {
 "id": 8712909,
 "timestamp": "20140116T124639+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037871,-82.596204",
 "translatedValue": "28.037871,-82.596204"
 }
]
 },
 {
 "id": 2080060,
 "timestamp": "20140116T124539+0000",
 "datum": [
 {
 "id": 8712852,
 "timestamp": "20140116T124539+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712851,
 "timestamp": "20140116T124539+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712850,
 "timestamp": "20140116T124539+0000",
 "key": "GEN_SPEED",
 "value": "1.4",
 "translatedValue": "1.4 mph"
 },
 {
 "id": 8712849,
 "timestamp": "20140116T124539+0000",
 "key": "GEN_HEADING",
 "value": "333",
 "translatedValue": "333 deg"
 },
 {
 "id": 8712848,
 "timestamp": "20140116T124539+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037944,-82.596230",
 "translatedValue": "28.037944,-82.596230"
 }
]
 },
 {
 "id": 2080053,
 "timestamp": "20140116T124439+0000",
 "datum": [
 {
 "id": 8712823,
 "timestamp": "20140116T124439+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712822,
 "timestamp": "20140116T124439+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712821,
 "timestamp": "20140116T124439+0000",
 "key": "GEN_SPEED",
 "value": "2.8",
 "translatedValue": "2.8 mph"
 },
 {
 "id": 8712820,
 "timestamp": "20140116T124439+0000",
 "key": "GEN_HEADING",
 "value": "333",
 "translatedValue": "333 deg"
 },
 {
 "id": 8712819,
 "timestamp": "20140116T124439+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037912,-82.596222",
 "translatedValue": "28.037912,-82.596222"
 }
]
 },
 {
 "id": 2080043,
 "timestamp": "20140116T124339+0000",
 "datum": [
 {
 "id": 8712782,
 "timestamp": "20140116T124339+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712781,
 "timestamp": "20140116T124339+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712780,
 "timestamp": "20140116T124339+0000",
 "key": "GEN_SPEED",
 "value": "1.1",
 "translatedValue": "1.1 mph"
 },
 {
 "id": 8712779,
 "timestamp": "20140116T124339+0000",
 "key": "GEN_HEADING",
 "value": "133",
 "translatedValue": "133 deg"
 },
 {
 "id": 8712778,
 "timestamp": "20140116T124339+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037902,-82.596198",
 "translatedValue": "28.037902,-82.596198"
 }
]
 },
 {
 "id": 2080036,
 "timestamp": "20140116T124239+0000",
 "datum": [
 {
 "id": 8712744,
 "timestamp": "20140116T124239+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "80.0",
 "translatedValue": "201.6 deg F"
 },
 {
 "id": 8712743,
 "timestamp": "20140116T124239+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712742,
 "timestamp": "20140116T124239+0000",
 "key": "GEN_HEADING",
 "value": "165",
 "translatedValue": "165 deg"
 },
 {
 "id": 8712741,
 "timestamp": "20140116T124239+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037869,-82.596201",
 "translatedValue": "28.037869,-82.596201"
 }
]
 },
 {
 "id": 2080028,
 "timestamp": "20140116T124139+0000",
 "datum": [
 {
 "id": 8712705,
 "timestamp": "20140116T124139+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "80.5",
 "translatedValue": "202.5 deg F"
 },
 {
 "id": 8712704,
 "timestamp": "20140116T124139+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712703,
 "timestamp": "20140116T124139+0000",
 "key": "GEN_SPEED",
 "value": "4.7",
 "translatedValue": "4.7 mph"
 },
 {
 "id": 8712702,
 "timestamp": "20140116T124139+0000",
 "key": "GEN_HEADING",
 "value": "165",
 "translatedValue": "165 deg"
 },
 {
 "id": 8712701,
 "timestamp": "20140116T124139+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037881,-82.596196",
 "translatedValue": "28.037881,-82.596196"
 }
]
 },
 {
 "id": 2080016,
 "timestamp": "20140116T124039+0000",
 "datum": [
 {
 "id": 8712653,
 "timestamp": "20140116T124039+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "77.8",
 "translatedValue": "197.6 deg F"
 },
 {
 "id": 8712652,
 "timestamp": "20140116T124039+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712651,
 "timestamp": "20140116T124039+0000",
 "key": "GEN_SPEED",
 "value": "1.5",
 "translatedValue": "1.5 mph"
 },
 {
 "id": 8712650,
 "timestamp": "20140116T124039+0000",
 "key": "GEN_HEADING",
 "value": "351",
 "translatedValue": "351 deg"
 },
 {
 "id": 8712649,
 "timestamp": "20140116T124039+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037978,-82.596189",
 "translatedValue": "28.037978,-82.596189"
 }
]
 },
 {
 "id": 2080009,
 "timestamp": "20140116T123939+0000",
 "datum": [
 {
 "id": 8712622,
 "timestamp": "20140116T123939+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712621,
 "timestamp": "20140116T123939+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712620,
 "timestamp": "20140116T123939+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712619,
 "timestamp": "20140116T123939+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037968,-82.596198",
 "translatedValue": "28.037968,-82.596198"
 }
]
 },
 {
 "id": 2080000,
 "timestamp": "20140116T123839+0000",
 "datum": [
 {
 "id": 8712583,
 "timestamp": "20140116T123839+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "83.9",
 "translatedValue": "208.6 deg F"
 },
 {
 "id": 8712582,
 "timestamp": "20140116T123839+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712581,
 "timestamp": "20140116T123839+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712580,
 "timestamp": "20140116T123839+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037968,-82.596202",
 "translatedValue": "28.037968,-82.596202"
 }
]
 },
 {
 "id": 2079993,
 "timestamp": "20140116T123739+0000",
 "datum": [
 {
 "id": 8712547,
 "timestamp": "20140116T123739+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "80.5",
 "translatedValue": "202.5 deg F"
 },
 {
 "id": 8712546,
 "timestamp": "20140116T123739+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712545,
 "timestamp": "20140116T123739+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712544,
 "timestamp": "20140116T123739+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037976,-82.596200",
 "translatedValue": "28.037976,-82.596200"
 }
]
 },
 {
 "id": 2079986,
 "timestamp": "20140116T123639+0000",
 "datum": [
 {
 "id": 8712514,
 "timestamp": "20140116T123639+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "78.9",
 "translatedValue": "199.6 deg F"
 },
 {
 "id": 8712513,
 "timestamp": "20140116T123639+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712512,
 "timestamp": "20140116T123639+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712511,
 "timestamp": "20140116T123639+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037955,-82.596192",
 "translatedValue": "28.037955,-82.596192"
 }
]
 },
 {
 "id": 2079977,
 "timestamp": "20140116T123539+0000",
 "datum": [
 {
 "id": 8712476,
 "timestamp": "20140116T123539+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "76.6",
 "translatedValue": "195.5 deg F"
 },
 {
 "id": 8712475,
 "timestamp": "20140116T123539+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712474,
 "timestamp": "20140116T123539+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712473,
 "timestamp": "20140116T123539+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037959,-82.596177",
 "translatedValue": "28.037959,-82.596177"
 }
]
 },
 {
 "id": 2079973,
 "timestamp": "20140116T123439+0000",
 "datum": [
 {
 "id": 8712463,
 "timestamp": "20140116T123439+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "75.0",
 "translatedValue": "192.6 deg F"
 },
 {
 "id": 8712462,
 "timestamp": "20140116T123439+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712461,
 "timestamp": "20140116T123439+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712460,
 "timestamp": "20140116T123439+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037962,-82.596198",
 "translatedValue": "28.037962,-82.596198"
 }
]
 },
 {
 "id": 2079967,
 "timestamp": "20140116T123339+0000",
 "datum": [
 {
 "id": 8712437,
 "timestamp": "20140116T123339+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "72.8",
 "translatedValue": "188.6 deg F"
 },
 {
 "id": 8712436,
 "timestamp": "20140116T123339+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712435,
 "timestamp": "20140116T123339+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712434,
 "timestamp": "20140116T123339+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037976,-82.596202",
 "translatedValue": "28.037976,-82.596202"
 }
]
 },
 {
 "id": 2079957,
 "timestamp": "20140116T123239+0000",
 "datum": [
 {
 "id": 8712402,
 "timestamp": "20140116T123239+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "70.0",
 "translatedValue": "183.6 deg F"
 },
 {
 "id": 8712401,
 "timestamp": "20140116T123239+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712400,
 "timestamp": "20140116T123239+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712399,
 "timestamp": "20140116T123239+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037980,-82.596212",
 "translatedValue": "28.037980,-82.596212"
 }
]
 },
 {
 "id": 2079949,
 "timestamp": "20140116T123139+0000",
 "datum": [
 {
 "id": 8712366,
 "timestamp": "20140116T123139+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "67.8",
 "translatedValue": "179.6 deg F"
 },
 {
 "id": 8712365,
 "timestamp": "20140116T123139+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712364,
 "timestamp": "20140116T123139+0000",
 "key": "GEN_SPEED",
 "value": "1.1",
 "translatedValue": "1.1 mph"
 },
 {
 "id": 8712363,
 "timestamp": "20140116T123139+0000",
 "key": "GEN_HEADING",
 "value": "329",
 "translatedValue": "329 deg"
 },
 {
 "id": 8712362,
 "timestamp": "20140116T123139+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037986,-82.596210",
 "translatedValue": "28.037986,-82.596210"
 }
]
 },
 {
 "id": 2079941,
 "timestamp": "20140116T123039+0000",
 "datum": [
 {
 "id": 8712329,
 "timestamp": "20140116T123039+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "65.0",
 "translatedValue": "174.6 deg F"
 },
 {
 "id": 8712328,
 "timestamp": "20140116T123039+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 8712327,
 "timestamp": "20140116T123039+0000",
 "key": "GEN_HEADING",
 "value": "351",
 "translatedValue": "351 deg"
 },
 {
 "id": 8712326,
 "timestamp": "20140116T123039+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037966,-82.596160",
 "translatedValue": "28.037966,-82.596160"
 }
]
 },
 {
 "id": 2079933,
 "timestamp": "20140116T122939+0000",
 "datum": [
 {
 "id": 8712303,
 "timestamp": "20140116T122939+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "60.5",
 "translatedValue": "166.5 deg F"
 },
 {
 "id": 8712302,
 "timestamp": "20140116T122939+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712301,
 "timestamp": "20140116T122939+0000",
 "key": "GEN_HEADING",
 "value": "351",
 "translatedValue": "351 deg"
 },
 {
 "id": 8712300,
 "timestamp": "20140116T122939+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037975,-82.596183",
 "translatedValue": "28.037975,-82.596183"
 }
]
 },
 {
 "id": 2079926,
 "timestamp": "20140116T122839+0000",
 "datum": [
 {
 "id": 8712267,
 "timestamp": "20140116T122839+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "55.5",
 "translatedValue": "157.5 deg F"
 },
 {
 "id": 8712266,
 "timestamp": "20140116T122839+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712265,
 "timestamp": "20140116T122839+0000",
 "key": "GEN_SPEED",
 "value": "3.2",
 "translatedValue": "3.2 mph"
 },
 {
 "id": 8712264,
 "timestamp": "20140116T122839+0000",
 "key": "GEN_HEADING",
 "value": "351",
 "translatedValue": "351 deg"
 },
 {
 "id": 8712263,
 "timestamp": "20140116T122839+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037986,-82.596209",
 "translatedValue": "28.037986,-82.596209"
 }
]
 },
 {
 "id": 2079920,
 "timestamp": "20140116T122739+0000",
 "datum": [
 {
 "id": 8712243,
 "timestamp": "20140116T122739+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "50.0",
 "translatedValue": "147.6 deg F"
 },
 {
 "id": 8712242,
 "timestamp": "20140116T122739+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712241,
 "timestamp": "20140116T122739+0000",
 "key": "GEN_HEADING",
 "value": "166",
 "translatedValue": "166 deg"
 },
 {
 "id": 8712240,
 "timestamp": "20140116T122739+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037970,-82.596211",
 "translatedValue": "28.037970,-82.596211"
 }
]
 },
 {
 "id": 2079914,
 "timestamp": "20140116T122639+0000",
 "datum": [
 {
 "id": 8712212,
 "timestamp": "20140116T122639+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "43.9",
 "translatedValue": "136.6 deg F"
 },
 {
 "id": 8712211,
 "timestamp": "20140116T122639+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712210,
 "timestamp": "20140116T122639+0000",
 "key": "GEN_HEADING",
 "value": "166",
 "translatedValue": "166 deg"
 },
 {
 "id": 8712209,
 "timestamp": "20140116T122639+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037971,-82.596211",
 "translatedValue": "28.037971,-82.596211"
 }
]
 },
 {
 "id": 2079913,
 "timestamp": "20140116T122539+0000",
 "datum": [
 {
 "id": 8712208,
 "timestamp": "20140116T122539+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "35.5",
 "translatedValue": "121.5 deg F"
 },
 {
 "id": 8712207,
 "timestamp": "20140116T122539+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712206,
 "timestamp": "20140116T122539+0000",
 "key": "GEN_SPEED",
 "value": "22.5",
 "translatedValue": "22.5 mph"
 },
 {
 "id": 8712205,
 "timestamp": "20140116T122539+0000",
 "key": "GEN_HEADING",
 "value": "166",
 "translatedValue": "166 deg"
 },
 {
 "id": 8712204,
 "timestamp": "20140116T122539+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037975,-82.596213",
 "translatedValue": "28.037975,-82.596213"
 }
]
 },
 {
 "id": 2079910,
 "timestamp": "20140116T122439+0000",
 "datum": [
 {
 "id": 8712191,
 "timestamp": "20140116T122439+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "22.8",
 "translatedValue": "98.6 deg F"
 },
 {
 "id": 8712190,
 "timestamp": "20140116T122439+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.1",
 "translatedValue": "14.1V"
 },
 {
 "id": 8712189,
 "timestamp": "20140116T122439+0000",
 "key": "GEN_SPEED",
 "value": "23.5",
 "translatedValue": "23.5 mph"
 },
 {
 "id": 8712188,
 "timestamp": "20140116T122439+0000",
 "key": "GEN_HEADING",
 "value": "330",
 "translatedValue": "330 deg"
 },
 {
 "id": 8712187,
 "timestamp": "20140116T122439+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.037493,-82.595962",
 "translatedValue": "28.037493,-82.595962"
 }
]
 },
 {
 "id": 2079908,
 "timestamp": "20140116T122340+0000",
 "datum": [
 {
 "id": 8712185,
 "timestamp": "20140116T122340+0000",
 "key": "GEN_ENGINE_COOLANT_TEMP",
 "value": "83.9",
 "translatedValue": "208.6 deg F"
 },
 {
 "id": 8712184,
 "timestamp": "20140116T122340+0000",
 "key": "GEN_VOLTAGE",
 "value": "14.0",
 "translatedValue": "14.0V"
 },
 {
 "id": 8712183,
 "timestamp": "20140116T122340+0000",
 "key": "GEN_HEADING",
 "value": "326",
 "translatedValue": "326 deg"
 },
 {
 "id": 8712182,
 "timestamp": "20140116T122340+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.036539,-82.593698",
 "translatedValue": "28.036539,-82.593698"
 }
]
 }
]
 },
 "totalRecords": 27,
 "actions": []
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

DataSet

A DataSet is a collection of DataPoint s taken at the same time. For example, a DataSet may contain a speed value, a battery voltage value and a GPS location. It should be assumed that the DataPoints are related and were collected at the same time. This allows you to correlate different DataPoints with each other.

Properties

	Property
	Type
	Description
	Required for Creation

	id
	Integer
	The internal system identifier for this data set.
	Unsupported

	vin
	String
	The VIN of the vehicle the data is from
	Optional

	deviceId
	String
	The deviceId of the device collecting the data
	Required

	timestamp
	DateTime
	The time that the DataSet was created.
	Required

	datum
	DataPoint
	The DataPoint s contained within this DataSet.
	Required

	ignitionStatus
	String Enumeration
ON
OFF
RUNNING
	The state of the vehicle when this DataSet was collected.
	Required

Supported Verbs

	GET

	POST

GET

Returns data sets for the specified vehicle. By default, the first 50 results are returned.

Query Paths

	/vehicle/{vehicle-id}/dataSet/

	/vehicle/{vehicle-id}/dataSet/?startTime={startTime}&endTime={endTime}

Query Parameters

	Parameter
	Description

	startTime
	Used for filtering the results. Only data sets that started after this time are returned. See DateTime for the
format details.

	endTime
	Used for filtering the results. Only data sets that started before this time are returned. See DateTime for the
format details.

Call Options

	Sortable
	Yes (by timestamp)

	Pageable
	Yes

Sample JSON Response:

{
 "dataSet": [
 {
 "id": 1187922,
 "timestamp": "19991130T000000+0000",
 "datum": [
 {
 "id": 4562158,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_WAYPOINT",
 "value": "0.000000,0.000000",
 "translatedValue": "0.000000,0.000000"
 },
 {
 "id": 4562160,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 4562163,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_FUELRATE",
 "value": "0.0",
 "translatedValue": "0.0 gph"
 }
]
 },
 {
 "id": 1562501,
 "timestamp": "19991130T000000+0000",
 "datum": [
 {
 "id": 6223164,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_WAYPOINT",
 "value": "0.000000,0.000000",
 "translatedValue": "0.000000,0.000000"
 },
 {
 "id": 6223165,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_VOLTAGE",
 "value": "13.9",
 "translatedValue": "13.9V"
 },
 {
 "id": 6223167,
 "timestamp": "19991130T000000+0000",
 "key": "GEN_FUELLEVEL",
 "value": "0",
 "translatedValue": "0 %"
 }
]
 }
],
 "totalRecords": 23893,
 "actions": [
 {
 "name": "next",
 "uri": "https://api.carvoyant.com/v1/api/vehicle/C201200001/dataSet/?searchOffset=2&searchLimit=2",
 "methods": null,
 "inputs": null
 }
]
}

POST

Saves the data set to the specified vehicle. Note that in the production environment, this is a restricted call that only certain partners are authorized to use. If you feel you need to make calls to this endpoint, please contact us . In the sandbox environment, this is available for everyone.

Be aware that the system expects that a waypoint will be included with all DataSets that are posted to the system. It will not fail without one, but the user expects location to to be available for all recorded data points.

Query Paths

	/vehicle/{vehicle-id}/dataSet/

Sample JSON Request:

{
 "timestamp":"20140811T140444+0000",
 "vin":"123456789ABCDEFGH",
 "deviceId":"C20120000X",
 "ignitionStatus":"ON",
 "datum":[
 {
 "timestamp":"20140811T140444+0000",
 "key":"GEN_WAYPOINT",
 "value":"28.027065,-82.588619"
 },
 {
 "timestamp":"20140811T140444+0000",
 "key":"GEN_HEADING",
 "value":323
 },
 {
 "timestamp":"20140811T140444+0000",
 "key":"GEN_VOLTAGE",
 "value":"13.6"
 }
]
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

DataPoint

Represents a data point collected from a vehicle.

Properties

	Property
	Type
	Description

	id
	Integer
	The internal system identifier for this data point.

	timestamp
	DateTime
	The time that the data point was collected.

	key
	DataKey
	The type of data collected.

	value
	String
	The raw value collected from the vehicle.

	translatedValue
	String
	The value collected translated into human understandable form. This should only be used for display purposes.

Supported Verbs

	GET

GET

Returns raw vehicle data for the specified vehicle. By default, the first 50 results are returned.

Query Paths

	/vehicle/{vehicle-id}/data/

	/vehicle/{vehicle-id}/data/?key={key-id}

	/vehicle/{vehicle-id}/data/?mostRecentOnly=true

Query Parameters

	Parameter
	Description

	key
	Allows only specific data types to be returned. See DataKey for the allowable key-id s.

	mostRecentOnly
	If this is present, only the most recently collected data point for each type will be returned.

Call Options

	Sortable
	Yes (by timestamp)

	Pageable
	Yes

Sample JSON Response:

{
 "data": [
 {
 "id": 8727772,
 "timestamp": "20140116T183654+0000",
 "key": "GEN_WAYPOINT",
 "value": "28.088472,-82.578439",
 "translatedValue": "28.088472,-82.578439"
 },
 {
 "id": 8727773,
 "timestamp": "20140116T183654+0000",
 "key": "GEN_VOLTAGE",
 "value": "12.6",
 "translatedValue": "12.6V"
 }
],
 "totalRecords": 65070,
 "actions": [
 {
 "name": "next",
 "uri": "https://api.carvoyant.com/v1/api/vehicle/C201200001/data/?sortOrder=desc&searchOffset=2&searchLimit=2",
 "methods": null,
 "inputs": null
 }
]
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

EventSubscription

The EventSubscription object represents a unique event subscription within the Carvoyant system. The user may subscribe to an event that will deliver an EventNotification to the defined postURL when vehicle data has reached the specified criteria. In order to create an EventSubscription, all required fields for the specific event “_type” must be delivered in the body of the HTTP POST request. Required fields, resource URIs, and examples for the supported event types can be found in this documents children.

The Event model that we have implemented is based off of the Evented API Spec [http://www.eventedapi.org/]. This is a generic specification that helps define the transport of API events between two systems.

See the EventType page for details on the different events that can be subscribed to.

Note

You will only be able to interact with subscriptions that have been created with your client Id. Specifically, we will look at the access token
specified in the request, determine the client Id that was authorized with that access token, and only return subscriptions for that client Id.
You do not have access to subscriptions that have been created by other client Ids.

Common Properties

	Property
	Type
	Description
	Required for Creation

	id
	Integer
	The internal system identifier for this subscription.
	Unsupported

	_type
	EventType
	The type of event being subscribed to. (In this case the _type is “LOWBATTERY”)
	Unsupported

	creationTimestamp
	DateTime
	The time when the subscription was created.
	Unsupported

	deletionTimestamp
	DateTime
	The time when the subscription was marked for deletion. (This value will only be returned if the event has
been marked for deletion)
	Unsupported

	minimumTime
	Integer
	The time in minutes that will determine the minimum interval between event notification creation. If the
value is less than the reporting interval of the hardware, the hardware limit will be used.
	Required

	creatorClientId
	String
	The client Id that generated this subscription.
	Unsupported

	postUrl
	String
	The URL that will receive HTTPS POST notifications from the newly generated subscription. Note that only
HTTPS endpoints are supported. The certificate protecting the post URL must be a valid signed certificate.
	Deprecated
Use deliveries instead

	postHeaders
	Map
	A map that contains any headers that should be sent to the postUrl when a notification is generated.
	Deprecated
Use deliveries instead

	notificationPeriod
	NotificationPeriod
	A string that represents when EventNotifications are sent from the Carvoyant system. All NotificationPeriod
types are supported for LowBattery subscriptions.
	Required

	deliveries
	Array of DeliveryType
	An array with the delivery types for this subscription
	Required

Automated Updates

We have implemented some logic to automatically update subscriptions based on responses to the notifications that are sent to them. When the Carvoyant system attempts to send a notification to a HTTP_POST delivery option, the following actions will be taken based on the response code.

	HTTP 301 (Moved Permanently) and HTTP 308 (Permanent Redirect) - The postUrl of the delivery will be updated with the value in the Location response header. The notification will then be resent to the new postUrl.

	HTTP 302 (Found) and HTTP 307 (Temporary Redirect) - The notification will be resent to the url specified in the Location response header but the postUrl of the delivery option will remain unchanged.

	HTTP 4xx - We assume these are fatal errors and the delivery option will be deleted.

	HTTP 5xx - We assume these are temporary server side errors. The current notification will not be attempted again but the delivery option will remain unchanged.

Supported Verbs

	GET

	POST

	DELETE

GET

Returns one or more event subscriptions. By default, the first 50 results are returned.

Query Paths

	/account/{account-id}/eventSubscription/{subscription-id}

	/account/{account-id}/eventSubscription/{event-type}/{subscription-id}

	/vehicle/{vehicle-id}/eventSubscription/{subscription-id}

	/vehicle/{vehicle-id}/eventSubscription/{event-type}/{subscription-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. This is used for account level subscriptions

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. This is used for vehicle
level subscriptions

	subscription-id
	The Carvoyant identifier of the subscription. If the subscription-id is not
specified, then all subscriptions available will be returned.

	event-type
	Indicates the EventType of subscriptions to be returned.

Call Options

	Sortable
	Yes (by timestamp)

	Pageable
	Yes (when no subscription-id is specified. Individual subscription requests are not paginated)

Sample JSON Response:

{
 "subscriptions": [{
 "id": 1645,
 "_type": "LOWBATTERY",
 "_timestamp": "20140911T203312+0000",
 "minimumTime": 0,
 "creatorClientId": "hasa2czfebhsj6XXXXXXXXXX",
 "vehicleId": 123,
 "postUrl": "https://test.carvoyant.com/notify",
 "postHeaders": {
 "Authorization": "Bearer asdfqwerzxcv",
 "X-Sample-Headers": "Some custom value"
 },
 "notificationPeriod": "STATECHANGE"
 }, {
 "id": 1646,
 "_type": "VEHICLECONNECTED",
 "_timestamp": "20140911T203348+0000",
 "minimumTime": 0,
 "creatorClientId": "hasa2czfebhsj6XXXXXXXXXX",
 "vehicleId": 123,
 "postUrl": "https://test.carvoyant.com/notify",
 "postHeaders": {},
 "notificationPeriod": "INITIALSTATE"
 }, {
 "id": 1647,
 "_type": "VEHICLEDISCONNECTED",
 "_timestamp": "20140911T203408+0000",
 "minimumTime": 0,
 "creatorClientId": "hasa2czfebhsj6XXXXXXXXXX",
 "vehicleId": 123,
 "postUrl": "https://test.carvoyant.com/notify",
 "postHeaders": {},
 "notificationPeriod": "INITIALSTATE"
 }],
 "totalRecords": 3
}

POST

Creates a subscription. The query parameters listed here are common to all EventType. In order to successfully create a subscription the body of the request must specify all required properties of the particular EventType.

Note

Existing subscriptions cannot be updated. To “change” a subscription, you must delete the old one
and create a new one.

Query Paths

	/account/{account-id}/eventSubscription/{event-type}/

	/vehicle/{vehicle-id}/eventSubscription/{event-type}/

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. This is used for account level subscriptions

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. This is used for vehicle
level subscriptions

	event-type
	Indicates the EventType of subscriptions to be returned.

Sample Request:

{
 "minimumTime": 0,
 "postUrl": "https://test.carvoyant.com/notify",
 "postHeaders": {
 "Authorization": "Bearer asdfqwerzxcv",
 "X-Sample-Headers": "Some custom value"
 },
 "notificationPeriod": "CONTINUOUS"
}

DELETE

Marks a subscription for deletion. The system will purge the subscription after a set amount of time. These are not immediately deleted because doing so would also delete the history of EventNotification s for this subscription.

Query Paths

	/account/{account-id}/eventSubscription/{subscription-id}

	/account/{account-id}/eventSubscription/{event-type}/{subscription-id}

	/vehicle/{vehicle-id}/eventSubscription/{subscription-id}

	/vehicle/{vehicle-id}/eventSubscription/{event-type}/{subscription-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. This is used for account level subscriptions

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. This is used for vehicle
level subscriptions

	subscription-id
	The Carvoyant identifier of the subscription. If the subscription-id is not
specified, then all subscriptions available will be returned.

	event-type
	Indicates the EventType of subscriptions to be returned.

Sample JSON Response:

{
 "result": "OK",
 "totalRecords": 1,
 "actions": []
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

EventNotification

The EventNotification object corresponds to a unique EventSubscription within the Carvoyant system. The EventNotification will be delivered to the postURL provided by the EventSubscription via an HTTP POST message whose JSON body contains the details specific to the notification type. Examples for the supported event types can be found in this documents children.

The Event model that we have implemented is based off of the Evented API Spec [http://www.eventedapi.org/]. This is a generic specification that helps define the transport of API events between two systems.

See the EventType page for details on the different events that can be notified.

Note

You will only be able to get notifications that have been created for your client Id. Specifically, we will look at the access token
specified in the request, determine the client Id that was authorized with that access token, and only return notifications for EventSubscription s
for that client Id. You do not have access to notifications for subscriptions that have been created by other client Ids.

Common Properties

	Property
	Type
	Description

	id
	Integer
	The internal system identifier for this notification.

	accountId
	Integer
	The internal system identifier for this account.

	vehicleId
	Integer
	The internal system identifier for this vehicle.

	dataSetId
	Integer
	The Id of the DataSet that generated the notification.

	tripId
	Integer
	The Id of the Trip that generated the notification.

	subscriptionId
	Integer
	The internal system identifier for this notification’s corresponding EventSubscription.

	_domain
	String
	Serves as a namespace for the event.

	_type
	EventType
	The type of event notification being sent.

	_name
	EventType
	The type of event notification being sent. Note that this field should be considered deprecated. It is only supported because the Evented API spec has not fully implemented the change.

	_timestamp
	DateTime
	The time when the event occurred.

	eventTimestamp
	DateTime
	The time when the event notification was created.

	minimumTime
	Integer
	The time in minutes that will determine the minimum interval between event notification creation. If the value is less than the reporting interval of the hardware, the hardware limit will be used.

	httpStatusCode
	Integer
	The status code that was returned when attempting to POST the EventNotification to the postUrl. When the EventNotification is delivered to the postUrl the value of httpStatusCode will be 0. However, a subsequent GET request on the EventNotification will provide a useful httpStatusCode value derived from the postUrl’s response.

	notificationPeriod
	NotificationPeriod
	A string that represents when EventNotifications are sent from the Carvoyant system. Each EventType will define what periods are supported.

Supported Verbs

	GET

GET

Returns one or more event notifications. By default, the first 50 results are returned.

Query Paths

	/account/{account-id}/eventNotification/{notification-id}

	/account/{account-id}/eventNotification/{event-type}/{notification-id}

	/account/{account-id}/eventSubscription/{subscription-id}/eventNotification/{notification-id}

	/account/{account-id}/eventSubscription/{subscription-id}/eventNotification/{event-type}/{notification-id}

	/vehicle/{vehicle-id}/eventNotification/{notification-id}

	/vehicle/{vehicle-id}/eventNotification/{event-type}/{notification-id}

	/vehicle/{vehicle-id}/eventSubscription/{subscription-id}/eventNotification/{notification-id}

	/vehicle/{vehicle-id}/eventSubscription/{subscription-id}/eventNotification/{event-type}/{notification-id}

Query Parameters

	Parameter
	Description

	account-id
	The Carvoyant identifier of the account. This is used for account level notification

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example,
C201200001) or it could be the internal id returned from a previous lookup. This is used for vehicle
level notification

	notification-id
	The Carvoyant identifier of the notification. If the notification-id is not
specified, then all notifications available will be returned.

	subscription-id
	The Carvoyant identifier of the subscription.

	event-type
	Indicates the EventType of notifications to be returned.

Call Options

	Sortable
	Yes (by timestamp)

	Pageable
	Yes (when no notification-id is specified. Individual notification requests are not paginated)

Sample JSON Response

Note

This response only includes the properties that are common to all EventType . It is not a complete response. Refer to the EventType
page for the detailed list of what properties are returned for the notification.

{
 "notifications":[
 {
 "id":315931,
 "subscriptionId":1647,
 "_domain":"carvoyant.com",
 "_type":"VEHICLEDISCONNECTED",
 "_name":"VEHICLEDISCONNECTED",
 "_timestamp":"20140912T010246+0000",
 "minimumTime":0,
 "httpStatusCode":200,
 "notificationPeriod":"INITIALSTATE",
 "dataSetId":4795420,
 "creatorClientId":"hasa2czfebhsj6XXXXXXXXXX",
 "vehicleId":123
 },
 {
 "id":315932,
 "subscriptionId":1646,
 "_domain":"carvoyant.com",
 "_type":"VEHICLECONNECTED",
 "_name":"VEHICLECONNECTED",
 "_timestamp":"20140912T010303+0000",
 "minimumTime":0,
 "httpStatusCode":200,
 "notificationPeriod":"INITIALSTATE",
 "dataSetId":4795435,
 "creatorClientId":"hasa2czfebhsj6XXXXXXXXXX",
 "vehicleId":123
 }
],
 "totalRecords":2
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	API Reference

 	Resources

Test EventSubscription

Generates an EventNotification for the specified EventSubscription. This allows you to test that your subscription is configured properly. A dummy EventNotification object will be delivered to the postUrl provided in the requested EventSubscription and as a response to this request. The dummy notification will have null values where there would normally be recorded data that triggered the event.

Supported Verbs

	GET

GET

Query Paths

	test/vehicle/{vehicle-id}/eventSubscription/{subscription-id}

Query Parameters

	Parameter
	Description

	vehicle-id
	The Carvoyant identifier of the vehicle. This could be the device serial number in the car (for example, C201200001) or
it could be the internal id returned from a previous lookup.

	subscription-id
	The Carvoyant identifier of the subscription.

Call Options

	Sortable
	No

	Pageable
	No

Sample JSON Response:

{
 "notification": {
 "id": 1098702,
 "subscriptionId": 1645,
 "_domain": "carvoyant.com",
 "_type": "LOWBATTERY",
 "_name": "LOWBATTERY",
 "_timestamp": "20141218T211057+0000",
 "minimumTime": 0,
 "httpStatusCode": 500,
 "notificationPeriod": "STATECHANGE",
 "dataSetId": null,
 "creatorClientId": "hasa2czfebhsj6XXXXXXXXXX",
 "thresholdVoltage": 12,
 "recordedVoltage": null
 },
 "totalRecords": 1
}

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

Sandbox API

The Carvoyant Sandbox API provides a good way to build applications against the Carvoyant system without relying on a physical vehicle. This might be because you want to try out the Carvoyant platform before committing to a purchase, or simply because it’s easier to develop against a known set of vehicle data. In either case, there are a few things you need to know to get started using it.

The Environment

The sandbox environment contains all elements of the production environment with the exception of the systems that collect data from actual vehicles on the road (and therefore doesn’t support physical devices). Here are the endpoints that you need to get started:

https://sandbox-driver.carvoyant.com

This is the driver dashboard where you can register a Carvoyant account in the sandbox and create vehicles to test against.

https://sandbox-api.carvoyant.com/sandbox/api

This is the endpoint that you make API requests against. The resource space effectively matches production. Anywhere in our documentation where you see https://api.carvoyant.com/v1/api you would replace with https://sandbox-api.carvoyant.com/sandbox/api

https://sandbox-auth.carvoyant.com

This is our OAuth2 authorization endpoint where you can authorize your API to access your sandbox Carvoyant account.

https://sandbox-simulator.carvoyant.com

This is our traffic simulator for generating vehicle data in the sandbox environment.

Provisioning a Key

If you don’t already have a developer account, you will need to register one here: https://developer.carvoyant.com

On the registration screen, make sure that the Sandbox API checkbox is selected:

[image: ../_images/sandbox-provision-key.png]
If you already have a developer account you can easily add a sandbox key to it as well. After logging in, select “My Account” from the top right area and then click the “Applications” heading item:

[image: ../_images/sandbox-my-applications.png]
Next you need to decide whether you want to add the key to an existing application or create a new one. It’s probably easier to create a new one. Decide which you want to do and add the Sandbox API key.

Interactive API

Just like the production API, you can use the online interactive API [https://developer.carvoyant.com/io-docs] to make calls against the Sandbox API. After creating your Sandbox API key, switch over to the Interactive API and change the API to Sandbox API.

[image: ../_images/sandbox-iodocs.png]

Vehicle Data

Now that you’re all set up to make calls against the Sandbox environment, you need some data! If you haven’t already, add a vehicle to your Carvoyant account (or more than one - or more than one Carvoyant account, whatever you need). In the Sandbox environment, since there is no actual data collection, there are no hardware devices configured in the system so you will always leave the Device Id on the vehicle blank.

There are two ways that you can load up some data against your sandbox vehicles.

Inbound API

In the sandbox environment, we’ve opened up the ability for anyone to submit their own data through the API. This allows you to create very complex trips to meet whatever requirements you have for testing. An example of the data sets to submit in order to create a simple trip is below. You would pass each of these, in order, into the dataSet endpoint. All of them submitted would create a simple trip. The key is to ensure that the trip starts and contains only a single ignition ON event and ends with an ignition OFF event. Further, in order to track mileage correctly on the vehicle, you need to ensure that a GEN_TRIP_MILEAGE datum is in the ignition OFF message.

Sample JSON Messages:

{"timestamp":"20140811T140444+0000","ignitionStatus":"ON","datum":[{"timestamp":"20140811T140444+0000","key":"GEN_WAYPOINT","value":"28.027065,-82.588619"},{"timestamp":"20140811T140444+0000","key":"GEN_HEADING","value":323},{"timestamp":"20140811T140444+0000","key":"GEN_VOLTAGE","value":"13.6"}]}
{"timestamp":"20140811T140943+0000","ignitionStatus":"RUNNING","datum":[{"timestamp":"20140811T140943+0000","key":"GEN_WAYPOINT","value":"28.044153,-82.582672"},{"timestamp":"20140811T140943+0000","key":"GEN_HEADING","value":4},{"timestamp":"20140811T140943+0000","key":"GEN_SPEED","value":"49.8"},{"timestamp":"20140811T140943+0000","key":"GEN_VOLTAGE","value":"13.6"},{"timestamp":"20140811T140943+0000","key":"GEN_RPM","value":"720"},{"timestamp":"20140811T140943+0000","key":"GEN_ENGINE_COOLANT_TEMP","value":"88.0"}]}
{"timestamp":"20140811T141443+0000","ignitionStatus":"RUNNING","datum":[{"timestamp":"20140811T141443+0000","key":"GEN_WAYPOINT","value":"28.085202,-82.578820"},{"timestamp":"20140811T141443+0000","key":"GEN_HEADING","value":340},{"timestamp":"20140811T141443+0000","key":"GEN_SPEED","value":"46.5"},{"timestamp":"20140811T141443+0000","key":"GEN_VOLTAGE","value":"13.6"},{"timestamp":"20140811T141443+0000","key":"GEN_RPM","value":"2202"},{"timestamp":"20140811T141443+0000","key":"GEN_ENGINE_COOLANT_TEMP","value":"89.0"}]}
{"timestamp":"20140811T141526+0000","ignitionStatus":"OFF","datum":[{"timestamp":"20140811T141526+0000","key":"GEN_WAYPOINT","value":"28.088426,-82.578569"},{"timestamp":"20140811T141526+0000","key":"GEN_HEADING","value":352},{"timestamp":"20140811T141526+0000","key":"GEN_SPEED","value":"45.9"},{"timestamp":"20140811T141526+0000","key":"GEN_VOLTAGE","value":"12.8"},{"timestamp":"20140811T141526+0000","key":"GEN_RPM","value":"708"},{"timestamp":"20140811T141526+0000","key":"GEN_ENGINE_COOLANT_TEMP","value":"88.0"},{"timestamp":"20140811T141526+0000","key":"GEN_TRIP_MILEAGE","value":"4.3"}]}

Traffic Simulator

Having detailed access to submitting different data is nice, but sometimes you just want to simulate a couple of simple trips. To do that, we’ve created a simulation tool that allows you to select the vehicle you want, enter some points on a map, adjust some basic parameters if you want to, and then process the trip against your vehicle. This will send the data over just like a real vehicle would.

Open a web browser to https://sandbox-simulator.carvoyant.com and log in with your Carvoyant user credentials. Once you’re logged in, set up a trip by clicking the start and end point on the map. When it’s all set, click “Schedule Trip” and your trip will be sent to the Carvoyant platform.

[image: ../_images/sandbox-traffic-simulator.png]

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

Driver Dashboard

The Driver Dashboard application is a tool that Carvoyant users can use to register with our system and view basic information about their account (and it’s associated vehicles). It can be accessed at https://driver.carvoyant.com.

	Overview

	Trips

	Alerts
	Property Descriptions

	Applications

	Raw Data

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Driver Dashboard

Overview

When you first log in to the application, you will see a screen like this:

[image: ../_images/driverdash-overview.png]
On the top right of this screen, you have a few different actions that can be taken. You can edit your users profile, change the currently selected vehicle, or manage the currently selected vehicle. Note that the vehicle that is selected will be the vehicle used to display data for on all of the other sections of the dashboard.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Driver Dashboard

Trips

Within this section, you can review the information about all of the trips that you have taken. On the left will be every trip that Carvoyant has record of. When you select one, a map will display with the route of the trip. It will look like this. Note that if there were any events recorded for during the trip (such as a trouble code thrown), they will be displayed with an icon. Click the icon to see the details.

[image: ../_images/driverdash-trips-map.png]
In addition to the map view, there is a Graphs tab that lets you see specific data for the trip:

[image: ../_images/driverdash-trips-graph.png]

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Driver Dashboard

Alerts

The Carvoyant system can notify users when different types of events occur. These are referred to as Alerts within the Driver Dashboard. This example has one ignition status alert set up for the vehicle:

[image: ../_images/driverdash-alerts.png]
After selecting a subscription, you will see a list of any notifications that have been sent for it. Selecting a notification will display details of the alert.

The following alerts can be created:

	GeoFence - This alert will let you monitor the location where your vehicles are travelling.

	Ignition Status - This alert monitors whether the vehicle is on or off.

	Low Battery - This alert indicates that the battery voltage has dropped below 12.0 volts.

	Numeric Data Key - This alert lets you monitor any numeric data element (for example, when engine temperature has gone over a certain value).

	Time of Day - This alert lets you monitor the time of day that a vehicle is being used. Note that the alert checks for vehicle activity outside the specified values.

	Trouble Code - This alert monitors for any trouble codes that the vehicle throws.

When configuring an alert, the following properties can be selected for each alert type:

	
	GeoFence
	Ignition
Status
	Low
Battery
	Numeric
Data Key
	Time of Day
	Trouble
Code

	Minimum Notification
Interval
	X
	X
	X
	X
	X
	X

	Notification Period
	X
	X
	X
	X
	X
	X

	Recipients
	X
	X
	X
	X
	X
	X

	Location Map
	X
	
	
	
	
	

	Radius
	X
	
	
	
	
	

	Ignition Status
	X
	
	
	
	
	

	Boundary Condition
	X
	
	
	
	
	

	Data Key
	
	
	
	X
	
	

	Threshold Value
	
	
	
	X
	
	

	Relationship
	
	
	
	X
	
	

	Start Time
	
	
	
	
	X
	

	End Time
	
	
	
	
	X
	

	Days of Week
	
	
	
	
	X
	

Property Descriptions

Minimum Notification Interval

This is the minimum time between alerts in minutes. If you set this value to 60, you will only receive onealert every 60 minutes even it the event occurs more frequently.

Notification Period

This describes when the alert will be checked. Possible values are:

	Initial State - Only when the conditions are first met

	One Time - Only when the conditions are first met, and then the alert is delete (subsequent events will not alert you)

	Continuious - Alerts will be sent every time the Carvoyant system collects data that meet the alerts criteria

	State Change - Alerts will be sent when the criteria is first met, and then when the criteria is no longer met

Recipients

The recipients of the alerts. Currently we support Email and Glympse. Email will send a simple email to the addresses listed. Glympse is an integration with the Glympse service and is currently in beta.

Location Map

Select a location on the map.

Radius

The distance from a point on the map. This is in miles but can be partial (for example, 0.2).

Ignition Status

This can be one of three values:

	On - When the vehicle is first turned on

	Off - When the vehicles is turned off

	Running - Any time the vehicle is running

Boundary Condition

This can be one of two values:

	Inside: The geofence is triggered when the vehicle is within the radius of the specified location

	Outside: The geofence is triggered when the vehicle is outside the radius of the specified location

Data Key

Specified what data key type to monitor.

Threshold Value

The value of the recorded data key to check against.

Relationship

This can be one of three values:

	Above - The recorded data is above the threshold value

	Below - The recorded data is below the threshold value

	Equals - The recorded data equals the threshold value

Start Time

The start time of the allowed window.

End Time

The end time of the allowed window.

Days of Week

The days of the week for the allowed window.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Driver Dashboard

Applications

Most Carvoyant users will end up having multiple applications that are used to interact with your car. The Carvoyant system provides that connectivity to your car and a means for other application developers to interact with it. This page will allow you to review who you have granted access to your car, and if necessary, revoke that access.

Please note that if your revoke access to an application, that application will no longer work until you reauthorize it from within that applications.

[image: ../_images/driverdash-applications.png]

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Carvoyant API 1.0 documentation

 	Driver Dashboard

Raw Data

The Raw Data page will allow you to see every piece of data that Carvoyant has collected for the current vehicle. It is sortable by date and can be filtered by the type of data that you are interested in.

[image: ../_images/driverdash-rawdata.png]

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Carvoyant API 1.0 documentation

Sample Integrations

In this section we will periodically post how-to’s for connecting the Carvoyant platform to other systems.

All of these integrations will use the Carvoyant Sandbox environment. They all expect that the developer has created a Developer account, a Sandbox API key and a Carvoyant Sandbox User Account (with a vehicle on it). Instructions for getting started can be found here. Please be sure that your Sandbox environment is configured properly and that you are able to make API calls against the Carvoyant account.

scriptr.io

scriptr.io [https://www.scriptr.io/] is a secure Cloud based platform for implementing the back-end of IoT applications. It provides developers and development teams with a web IDE that integrates with code repositories, and a wide range of native APIs, SDKs and connectors that dramatically simplify development and reduce time to market. scriptr.io also takes care of your application’s infrastructure needs such as security, scalability and reliability. In addition, developers can get access to enterprise connectors through scriptr.io’s partners such as wot.io [http://wot.io/]. The scriptr.io team has prepared a tutorial for building Carvoyant applications on the scriptr.io platform. You can view the tutorial here.

SmartThings

This example integration will add your Carvoyant enabled vehicles to your SmartThings setup. You will be able to integrate your vehicles presence as well as it’s ignition state into your smart home configuration. View the how-to here.

Force.com

This example integration will use Vehicle location Event Subscriptions to update a map within a Force.com application. View the how-to here.

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Carvoyant API 1.0 documentation

Index

 Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

 _images/salesforce-vehicle-object.png
" Custom Object: Vehicle x \|_|
“« > 08 \ https://nal6.salesforce.com/011j0000000TTzr?setupid=CustomObjects i&\ O=w 9 =

)
salesforee S et bl g ([CARBYARTESNS

Home Chatter Files Vehicles Reports Dashboards VehicleMap +

Run your business from any mobile device with the Salesforcel Mobile App.

.
Take Salesforce with you wherever you go ik
. ol Ty
L [& o siore | - Eoieoo | =X

Quick Fin Q| custom object Hep for tis Page @

Vehicle
Expand Al | Collapse Al
1 ‘Standard Fields [4] | Custom Fields & Relationships [1] | Validation Rules[0] | PageLayouts[l] | Field Sets[0] | Compactlayouts[l] | Searchlayouts[6] | Buttons, Links. and Actions | Record Types[0] | Apex Sharing Reasons[0] | Apex Sharing Recalculation [0] | Object Limits [10]

Custom Object Definition Detail

System Overview ‘Singular Label Description

Force.com Home

Pural Label Enable Reports
Personal Setup Object Name Track Activites

(31 My Personal Information AT Allow Sharing
31 Email Allow Bulk AP1 Access
(+] Import Allow Streaming API Access
3] Desktop Integration Track Field History
(3] My Chatter Settings

Deployment Status Deployed
3] My Social Accounts and cnmlms‘ Help Settings Standard salesforce.com Help Window

Created By Matt Gaivin, 913012014 11:50 AM Modified By Matt Galvin, 10/8/2014 12:16 PM
App Setup

5 Customize Standard Fields
@ Create

Apps
S Createq By Lookup(User)

Lasi Modifed By Lookup(User)
Eoit OQwner Lookup(User Queve)
Edt Vehie Name Texi(e0)

‘Standard Fields Help (2)
Action Field Label ‘Data Type

Objects
Packages
Report Types
Tabs

(3] Global Actions Custom Fields & Relationships [New |

[+ Workflow & Approvals

‘Custom Fields & Relationships Help (2)

Action Field Label Data Type Modified By
(») Develop Edit|Del Vehicle Location 1 Geolocation Matt Galvin, 10/8/2014 12:15 PM
(»/ Deploy

I RLIE Related Lookup Filters
Canvas App Previetwer

e P No related lookup fiers defined.
AppExchange Marketplace
Critical Updates Validation Rules

_images/smartthings_carvoyant_arrival_1.png
X Carvoyant Actions

Setup Event

App Nickname

Assign a name
Jeep Arrived

When the selected vehicle(s)

Select Carvoyant Vehicle(s)...
1999 Jeep Wrangler SE

perform this event

Select Vehicle Event...

Arrival

AN o] Ll ot e Y e

_images/salesforce-client-creds.png
0Cij000000080I1U

MattGalvin v Help&Training | CarvoyantTest

Files Vehicles Reports Dashboards VehicleMap +

Take Salesforce with you wherever you go.

Run your business from any mobile device with the Salesforcel Mobile App.

Quick Find Q.| Connected App Name Help for this Page @

Carvoyant API

Expand Al | Collapse All

«Backo List: Custom
Force.com Home e

() o) (==

Version 10
APIName Carvoyant API
Personal Setup 10/1/2014 7:45 AM
[+] My Personal Information By: Matt Galvin

) Email matt@carvoyant.com
) Import
¥ Deskiop Integration 101172014 745 AM
¥) My Chater Setings By: Matt Gain
(¥ My Social Accounts and Contacts

System Overview

App Setup
v API (Enable OAuth Settings)

Customize
E = e e | Gonsumer Secret Clek (o reveal
Selected OAuth Scopes Access and manage your daia (ap) Callback URL hitpdfocalhost

Apps
Custom Labels
Trusted IP Range for OAuth Web server flow [(New |

No records to dispiay

Custom Attributes

No records to dispiay.

_images/salesforce-connected-app.png
=)

Home Chatter Files Vehicles Reports Dashboards VehicleMap +

Take Salesforce with you wherever you go. . ’
Run your business from any mobile device with the Salesforcel Mobile App. m

Quick Find aQ

Expand Al | Collapse All

Force.com Home
System Overview

Personal Setup

(31 My Personal Information
31 Email

31 Import

(%) Desktop Integration

(3] My Chatter Settings

(¥ My Social Accounts and Contacts

App Setup
3] Customize
© Create

Apps
Custom Labels.

New Connected App

N 4 o3

===

“To publish an app, you need to be using a Developer Edition organization with a namespace prefix chosen.

Basic Information

Connected App Name
API Name
Contact Email

Contact Phone

Logo Image URL

leon URL

API (Enable OAuth Settings)
Enable OAuth Settings

Callback URL.

Use digital signatures

Upload logo image or Choose one of our sample logos

Choose one of our sample logos.

a8

Available OAuth Scopes

(Access and manage your Chatter data (chatter_api)
‘Access and manage your data (api)

‘Access custom permissions (custom_permissions)

‘Access your basic information (i, profile, email, address, phone)

\Allow access to your unique identifier (openid)

Full access (full)

'Perform requests on your behalf at any time (refresh_token, offine_access)
'Provide access to custom applications (visualforce)

Provide access to your data via the Web (we

Matt Galvin v

Help & Training

CarvoyantTest +

Helpfor s Page @

1= Required Informaton

_images/smartthings_carvoyant_ignitionon_2.png
® Jeep Ignition On

Setup Action
Set the selected lock(s)

Select Lock(s)...

Locked/Unlocked

Set the selected light(s)
Select Light(s)...

Bulb 1

On/Off
ON

_images/smartthings_carvoyant_myapps_add.png
< () SmartSetup

\Y o] (]

My Apps

Carvoyant Actions

Create actions to perform when
Carvoyant enabled vehicles perform
events.

Connected Car Setup

This is the Carvoyant service
manager. It is used to manage your
Carvoyant OAuth2 authorization
and to configure your connected car
devices.

_images/driverdash-applications.png
3 Driver Dashboard ~ x \ | =EE

+ + © # @ https:/driver.carvoyant.com/dashboard/applications “ 0 e @ =

Welcome Matt (Edit Profie | Logaut)

—~ Selected Vehicle:

carv 9 a nt (1595 jsep Virangler S atEs Jeep)

Your Car. Your Data. Your API.

(4dd | Edit | Delete)

Overview Trips Alerts Raw Data

Your Connected Applications

“Thisis used by intemal Carvoyant applications to access our APL.
Test Canvoyant Application “Thisis a test application that will be used for verifing api calls and generating documentation samples.
Fuse ‘Connected car platform

“Thisis a sample Android appiiation that will show you all o your Carvoyant enabied vehicles on a map on your mobil device.

DATA PROVIDED BY dmﬁ

_images/driverdash-overview.png
S Driver Dashboard x|

SEIEY

« + © & @ https:/driver.carvoyant.com/dashboard/index

0= 9

=
carveyant

Your Car. Your Data. Your API.

Trips Alerts Applications

DATA PROVIDED BY Ollmundsﬁ

Greater
Northdale

Welcome Matt (Edit Profie | Logaut)

Selected vehicle:
(71999 jeep Wrangler SE - Matt's jeep v
(4dd | Edit | Detete)

University -~
Rk University of
i
e
s

“EastTampa

College ils

_images/smartthings_carvoyant_ignitionon_3.png
() Jeep Ignition On

Notifications

Send a push notification?

Send a Text Message?

Detailed Notifications?

Uninstall

_images/sandbox-traffic-simulator.png
[=]B]]

@ Taffic Simulator x_\
O w @ =

« > O & ‘ https://sandbox-simulator.carvoyant.com/tripCreator/index

Welcome Matt (Logou)
‘Selected Vehicle:

—
CCIFV@QCInt

Your Car. Your Data. Your API.

Route Builder

e e
(1010872014 09:34) (5mn v
~—Speed (miles/hr)

- [-
B A ——

-] P — -
~0 — e 5 E

0 0 | } 13

: Keystone pS ~ ;l'.
T — = ; e W

Greater | (557)

0 . . : . o3 5 findale

csrf BT
Comm

2Ty @
t2p dta ©2014 Google | Tems of Use _ Reportamap eror |

_images/sandbox-iodocs.png
1/0 Docs: APl Documentation

Test our AP services using /0 Docs. You can also view our API documentation.

Carvoyant API
Select an API
Carvoyant API
Sandbox API

Trial Package API

OAuth 2.0 Flow: Authorization Code / Web Server ¥

pn for the Carvoyant API calls. Only standard and strategic partners should use this version of the documentation. Trial users, please select

Existing Client
Credentials:

_images/salesforce-create-app.png
App Quick Start x

@ Tell us about your app, and we'll whip up the basic parts for you.

What's the name of your app?
(You can always change this and other labels later.)

Required Field

* App | CanvoyantTest Example: Recruiing

Whats the main type of data you need to track? i
(You can add more objects later.)

* Label |Vehicle Exampl: Posiion

* Plural Label |Vehicies Exampl: Positons

O Starts with vowe! sound

_images/smartthings_carvoyant_departure_2.png
® Jeep Departed

Setup Action
Set the selected lock(s)

Select Lock(s)...

Locked/Unlocked

Set the selected light(s)
Select Light(s)...

Bulb 2

On/Off
OFF

_images/smartthings_carvoyant_setup_5.png
Carvoyant Vehicles Done
1999 Jeep Wrangler SE v

2013 Subaru XV Crosstrek Limited B

_static/comment-close.png

_images/smartthings_carvoyant_setup_1.png
X) Connected Car Set.. Done

Carvoyant Setup

Tap below to log in to the Carvoyant portal and
authorize SmartThings access.

Carvoyant Authorization

Uninstall

_images/driverdash-alerts.png
3 Driver Dashboard ~ x \ | (==l

+ + © & @ https:/driver.carvoyant.com/dashboard/alerts “ 0 e @ =

Welcome Matt (Edit Profie | Logaut)

—
—~ Selected Vehicle:

carv gqnt I Ty T —)

Your Car. Your Data. Your API. (add | Edit | Delete)

Overview Trips

Subscriptions. Subscription Details
Minimum Notificaion Interval omin
Notfcation Period INTIALSTATE
Reciient Type: Glympse 8133760384

Recipent Type: Email matt@carvoyant com

Notifications
T

IGNITIONSTATUS. ‘Aug 26, 2014 7:37:39 PM.
IGNITIONSTATUS Aug 27, 2014 703.07 AM
IGNITIONSTATUS. Aug 27, 2014 7:12:12 AM
IGNITIONSTATUS Aug 27, 2014 723:35 AM
IGNITIONSTATUS. Aug 27, 2014 9:36:06 AM
IGNITIONSTATUS Aug 27, 2014 9.47:37 AM
IGNITIONSTATUS. Aug 27, 2014 338:41 PM
IGNITIONSTATUS Aug 28, 2014 703:29 AM
IGNITIONSTATUS. Aug 28, 2014 7:13:16 AM
IGNITIONSTATUS Aug 29, 2014 7:04:56 AM
IGNITIONSTATUS. Aug 29, 2014 7:11:40 AM
IGNITIONSTATUS Sep2,2014 70311 AM
IGNITIONSTATUS. Sep2,20147:1405 AV
IGNITIONSTATUS Sep2,20147:30:04 AM

IGNITIONSTATUS

Sep2,2014 7:34:50 AV

DATA PROVIDED BY dm@

sample-integrations/smartthings/smartthings.html

 Navigation

 		
 index

 		Carvoyant API 1.0 documentation »

SmartThings

Overview

At the end of this walk through, you will have added your Carvoyant enabled connected car to your SmartThings connected home. This will be a step-by-step instruction but it does assume some familiarity with the SmartThings IDE and the standard nomenclature that SmartThings uses. Specifically, you will be creating a custom device type and two custom SmartApps.

All of the code referenced here can be found in our SmartThings Github repository [https://github.com/carvoyant/SmartThings] .

The following SmartThings objects will be created:

carvoyant: Connected Car Device Type

This device type will support the “sensor” and “presenceSensor” capabilities and will have a custom attribute representing the ignition status of the vehicle. This device type will be used to create a thing representing your vehicle.

carvoyant: Connected Car Setup SmartApp

This SmartApp is a service manager SmartApp that allows the Carvoyant system and the SmartThings cloud to communicate with each other.

carvoyant: Carvoyant Actions SmartApp

This SmartApp is used to configure events from your Connect Car device.

Pre-requisites

Carvoyant Developer Account

If you do not already have one, you will need to register a Carvoyant developer account. Refer to our Getting Started guide. You will need to decide whether to connect to the Carvoyant sandbox or production environment. It’s easiest to test things using the sandbox environment so that’s what we will assume in this guide.

Once you have a developer account, you will need to create a Carvoyant client id for your SmartThings application. Follow the instructions for creating a sandbox application here .

After your sandbox application is created, register a driver account at https://sandbox-driver.carvoyant.com and add a vehicle to it. Get familiar with simulating data against your sandbox account as described in the Sandbox API . Confirm that you can make API calls using the Interactive API [https://developer.carvoyant.com/io-docs] .

Note

The Carvoyant sandbox environment is used for this walk through only because it’s easy to simulate the data and show how the integration works. Everything that can be done here can be done against the Carvoyant production environment. The only thing you would do differently is create an application for the Carvoyant Production API (ie, client id and secret), use the production API and Auth URLs and a production Carvoyant driver account.

SmartThings Account

Create a SmartThings account for their online IDE here [https://graph.api.smartthings.com/] .

A Carvoyant connected vehicle is what SmartThings refers to as a Cloud-Connected Device Type. These are devices that the SmartHub does not directly interact with. If you are not familiar with this functionality within SmartThings, we suggest you read over their documentation [http://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-cloud-connected-device-types/index.html] .

SmartThings Setup

Custom Device Type

Within the SmartThings IDE, navigate to My Device Types and add a new device type. Select From Code and paste in the contents of ConnectedCar.groovy [https://github.com/carvoyant/SmartThings/blob/master/ConnectedCar.groovy] . This will create the device type that represents a Carvoyant enabled car. Save and then Publish the new device type.

Service Manager SmartApp

After creating the device type, change to the My SmartApps section within the SmartThings IDE and add a new SmartApp. Select From Code and paste in the contents of ConnectedCarSetup.groovy [https://github.com/carvoyant/SmartThings/blob/master/ConnectedCarSetup.groovy] . This creates the initial SmartApp to interact with Carvoyant.

Once the service manager is created, go back into it and select the App Settings button. On the Edit screen, select the Settings section. You will need to populate following four settings:

		Name
		Value

		carvoyantApiUrl
		The Carvoyant API URL.

		
		Sandbox: https://sandbox-api.carvoyant.com/sandbox

		
		Production: https://api.carvoyant.com/v1/api

		carvoyantAuthUrl
		The Carvoyant Authorization URL.

		
		Sandbox: https://sandbox-auth.carvoyant.com

		
		Production: https://auth.carvoyant.com

		carvoyantTokenUrl
		The Carvoyant Token URL.

		
		Sandbox: https://sandbox-api.carvoyant.com/oauth/token

		
		Production: https://api.carvoyant.com/oauth/token

		carvoyantClientId
		This is the Client Id for the Carvoyant Sandbox Application that you created.

		carvoyantSecret
		This is the Secret for the specified Client Id.

Save your changes and then Publish the SmartApp.

Finally, go back into the App Settings for the SmartApp and open the OAuth section. Click the Enable button.

Carvoyant Actions SmartApp

The SmartApp that we will be creating will tell the Carvoyant system to notify SmartThings of several different events for your vehicle:

		Arrival - An event will be triggered indicating that the vehicle has arrived at the current SmartThings selected location.

		Departure - An event will be triggered indicating that the vehicle has left the current SmartThings selected location.

		Ignition On - An event will be triggered indicating that the vehicle has been turned on.

		Ignition Off - An event will be triggered indicating that the vehicle has been turned off.

Note

These events are just a few of the events that can be triggered. Any event notification generated by the Carvoyant system can be tied into the SmartThings system. See below on how to extend these SmartApps.

Go into the My SmartApps section within the SmartThings IDE and add a new SmartApp. Select From Code and past in the contents of CarvoyantActions.groovy [https://github.com/carvoyant/SmartThings/blob/master/CarvoyantActions.groovy] . There is no configuration needed so just Save and Publish the SmartApp.

Get Everything Running

At this point, all of the necessary items have been created in your SmartThings environment. Now it’s time to hook it all up. For this example we have a set of Philips Hue lights that are controlled by our SmartHub. We are going to configure our office so that one light is on or off depending on the ignition status of the vehicle and another light on or off depending on the presence of the vehicle.

Install the Connected Car Setup SmartApp

Open the SmartThings mobile application and select the + icon at the bottom. Swipe right until you get to My Apps. You should see the two Carvoyant SmartApps available. Select Connected Car Setup.

[image: ../../_images/smartthings_carvoyant_myapps_add.png]
First you must authorize Carvoyant to share data with SmartThings. Select Carvoyant Authorization. This will open up a log in screen in the Carvoyant sandbox environment. Log in with the driver account credentials that you created earlier. These are the same credentials you used to log in to https://sandbox-driver.carvoyant.com. When you see the confirmation screen, select Done.

[image: ../../_images/smartthings_carvoyant_setup_1.png]
[image: ../../_images/smartthings_carvoyant_setup_2.png]
[image: ../../_images/smartthings_carvoyant_setup_3.png]
After authorizing Carvoyant to share data, you will be able to select which Carvoyant enable vehicles from your account you want available within SmartThings. Select one or more vehicles.

[image: ../../_images/smartthings_carvoyant_setup_4.png]
Select the vehicles you want to add to SmartThings and then select Done

[image: ../../_images/smartthings_carvoyant_setup_5.png]
Select the Done button in the top right to save your Carvoyant configuration. You will now have a SmartThings thing for each of your vehicles.

Configure Some Actions

Now that your vehicles are available within SmartThings, it’s time to do something with them. Go back into the My Apps screen within the mobile app. This time, select Carvoyant Actions.

These actions are going to be based on our vehicle and our connected bulbs. Use whatever vehicle and bulbs (or any other switch for that matter) you have available. When you are done setting up these actions, your My Apps page will look similar to this:

[image: ../../_images/smartthings_carvoyant_myapps_installed.png]

Ignition On

First assign a nick name to this instance of the Carvoyant Actions SmartApp. This is not absolutely necessary but if you want different actions to happen for different vehicles, you’ll need to install multiple copies of the SmartApp. Customizing the name makes it easier to distinguish within the SmartThings mobile application. We’re going to call this one “Jeep Ignition On”. Then select which vehicle(s) you want these actions to apply to. We are going to select the “1999 Jeep Wrangler”. For the Vehicle Event, select “Ignition On”. Note that we have added support for adding in a motion sensor but we’re not going to set that up in this example.

[image: ../../_images/smartthings_carvoyant_ignitionon_1.png]
After selecting the vehicle and event type, click Next. On this screen we will configure what happens. Again, we’ve added support for several different devices types but we’re only going to turn on a light.

[image: ../../_images/smartthings_carvoyant_ignitionon_2.png]
Select Next and you’ll be taken to the final screen where you can control whether you want notifications to be sent to you. We are not going to configure any so just select Done

[image: ../../_images/smartthings_carvoyant_ignitionon_3.png]

Ignition Off

The setup for ignition off is exactly the same. Add a new instance of the Carvoyant Actions SmartApp. This time title it “Jeep Ignition Off” and select the “1999 Jeep Wrangler”. For Vehicle Event, this time we select “Ignition Off”.

[image: ../../_images/smartthings_carvoyant_ignitionoff_1.png]
Select Next. Choose the same bulb from the “Ignition On” setup. This time, select “Off” for the bulb.

[image: ../../_images/smartthings_carvoyant_ignitionoff_2.png]
Select Next and since we are not configuring notifications, select Done.

Vehicle Arrived

When the vehicle thing was created during setup, the SmartApp created a geofence subscription based on the current latitude and longitude of the Location that your SmartHub is in. Presence is detected by your vehicle being within 1 mile of that location.

To set up the arrival action, follow the same steps as the ignition status actions. We will title this one “Jeep Arrival” and we are going to turn “Bulb 2” on. No notifications will be sent.

[image: ../../_images/smartthings_carvoyant_arrival_1.png]
[image: ../../_images/smartthings_carvoyant_arrival_2.png]

Vehicle Departed

To set up the departed action, follow the same steps as the arrival action. We will title this one “Jeep Departed” and we are going to turn “Bulb 2” off. No notifications will be sent.

[image: ../../_images/smartthings_carvoyant_departure_1.png]
[image: ../../_images/smartthings_carvoyant_departure_2.png]

Test It Out

In order to test that your actions are working properly, open up the Traffic Simulator [https://sandbox-simulator.carvoyant.com] and log in with the same Carvoyant credentials that you authorized within SmartThings. You are going to simulate two trips, one driving to your location and one driving away from your location. First make sure that the vehicle you are simulating is the same one that you have configured within SmartThings. You can change it using the drop down in the top right of the screen if necessary.

Driving To Your Location

Click a point on the map that is greater than 1 mile from your SmartHub Location. Click a second point at your SmartHub Location. If you want you can change the simulation parameters but for this demonstration the details of the trip do not matter. When your trip is set up, click the Simulate button.

When the vehicle “starts” (ie, you begin to see progress on the progress bar), “Bulb 1” will turn on. As the simulated vehicle reaches 1 mile from your Location, “Bulb 2” will turn on. When the trip ends, “Bulb 1” will turn off.

Driving Away From Your Location

Refresh the screen to start a new trip. Click the first point at your SmartHub Location. Click the second point at some point greate than 1 mile away from your Location. Click the Simulate button.

When the vehicle “starts” (ie, you begin to see progress on the progress bar), “Bulb 1” will turn on. As the simulated vehicle exceeds 1 mile away from your Location, “Bulb 2” will turn off. When the trip ends, “Bulb 1” will turn off.

Making It Smarter

In order to keep this guide simple, we’ve chosen to implement only two very basic events from the Carvoyant platform; geofencing and ignition status. The Carvoyant system supports many more events than just those two however. Perhaps you want to signal an alarm in your house if the battery in your car is running low while it’s parked outside? Or set an alarm is a certain vehicle in your house is speeding or in an accident? Many of the use cases around a connected car are presence related and can be handled using mobile devices instead but sometimes that’s not sufficient. There may also be data collected from the car that can’t be detected in other ways that you want to trigger actions within your smart home.

Regardless of why, if you want to extend the functionality to include any of the EventType notifications that we support, here’s how you do it. This expects you to be a lot more familiar with both SmartThings and Carvoyant development than the above guide.

First you need to decide what data it is that you are going to receive from Carvoyant and decide how to store it. You may need to add a capability to the Connected Car Device Type. Or perhaps simply adding an additional attribue is enough. For ignitionStatus we added a new attribute.

Next, decide where to create the Carvoyant event subscriptions. The geofence and ignition status subscriptions are created within the service manager SmartApp when the vehicle is created. You can create them there if you like. The other alternative is to have the Carvoyant Action SmartApp manage the subscription creation and deletion. In either case, you’ll use the service manager SmartApp to make an API call to Carvoyant with the subscription.

When a notification is generated from Carvoyant for a subscription, it needs a URL to post to. Update the service manager SmartApp and add a new web service mapping. Follow the same pattern that you see for the others. You’ll add a method that gets called that will update the attribute on the connected car device.

Now that SmartThings is receiving the events, you’ll need to integrate them with your other things. You could enhance the Carvoyant Actions SmartApp to support the new functionality or you could write your own SmartApp. The choice is up to you!

Now go have fun connecting your car to the rest of your life!

 © Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

_images/smartthings_carvoyant_setup_2.png
X) Carvoyant Authoriz... Done

The application:

Sandbox SmartThings

Is requesting access to your
Carvoyant account.

Please login to approve access.

Username: [|
Password: [|

Register New Carvoyant Account

sample-integrations/force_com/force-com.html

 Navigation

 		
 index

 		Carvoyant API 1.0 documentation »

Force.com

Overview

At the end of this walk through, you will have created a map within your Force.com application that updates the position of vehicles from your Carvoyant account as they travel around. The end screen will look similar to this:

[image: ../../_images/salesforce-vehiclemap.png]
You will be able to use the Carvoyant traffic simulator to simulate a trip for any of the vehicles and the map within the Force.com application will be updated with the new locations of the vehicle.

Note that this how-to will use a trial Force.com account for any screenshots so your actual account may look differently depending on how you have it customized.

Step 1 - Create the CarvoyantTest Application

Log in to your account and create a new application. Under the Setup screen click the green “Add App” button.

[image: ../../_images/salesforce-create-app.png]
Use the following values:

		App
		CarvoyantTest

		Label
		Vehicle

		Plural Label
		Vehicles

This will create your application and a new Vehicle object.

Step 2 - Add Location to the Vehicle object

Under Setup select Create -> Objects, select the Vehicle object. Under custom fields, select “New”.

Create a new geolocation field with the following values:

		Type
		Geolocation

		Field Label
		Location

		Decimal Places
		6

		Field Name
		Location

Your Vehicle record will look like this:

[image: ../../_images/salesforce-vehicle-object.png]

Step 3 - Create a Connected App

Under Setup select Create -> Apps. Under the Connected Apps section, select New.

[image: ../../_images/salesforce-connected-app.png]
Use the following values:

		Connected App Name
		Carvoyant API

		API Name
		Carvoyant_API

		Contact email
		<your email>

		Enable OAuth Settings
		Checked

		Callback URL
		http://localhost

		Selected OAuth Scopes
		Access and manage your data (api)

Step 4 - Create a Streaming API PushTopic for Vehicles Updates

Under your name in the top right, open up the Developer Console.

In the Developer Console, under the Debug menu, select “Open Execute Anonymous Window”. Paste in the following Apex code and click Execute::

PushTopic pushTopic = new PushTopic();
pushTopic.Name = 'VehicleUpdates';
pushTopic.Query = 'SELECT Id, Name, Location__Latitude__s, Location__Longitude__s FROM Vehicle__c';
pushTopic.ApiVersion = 31.0;
pushTopic.NotifyForOperationCreate = true;
pushTopic.NotifyForOperationUpdate = true;
pushTopic.NotifyForOperationUndelete = true;
pushTopic.NotifyForOperationDelete = true;
pushTopic.NotifyForFields = 'Referenced';
insert pushTopic;

Step 5 - Upload Required Resources

There are a few javascript files that are going to be needed. Download streaming.zip to your local computer.

Within the Salesforce Setup screen, select Develop -> Static Resources. Click the “New” button. Not the “Create New View” link!

Name the resource “streaming.zip” and upload the streaming.zip file.

Step 6 - Create a Vehicle Map Page

Open the Developer Console and select File -> New -> Apex Class. Name the class VehicleController. Replace the template with the following code::

public class VehicleController {
 public String getVehicles() {
 // Constraining the query to 20 vehicles here - you can have as many as you like
 List<Vehicle__c> vehicles = [SELECT Id, Name, Location__Latitude__s, Location__Longitude__s
 FROM Vehicle__c
 LIMIT 20];
 return JSON.serialize(vehicles);
 }
}

Save the Apex class. This creates the controller that the page will use to load Vehicle data.

Next, select File -> New -> Visualforce Page. Name the page VehiclePage. Replace the template with the following code::

<apex:page controller="VehicleController"
 showHeader="true" standardStylesheets="true"
 cache="false" doctype="html-5.0">
<html>
 <head>
 <title>Vehicles</title>

 <!-- jQuery, CometD -->
 <apex:includeScript value="{!URLFOR($Resource.streaming, 'cometd.js')}"/>
 <apex:includeScript value="{!URLFOR($Resource.streaming, 'jquery-1.5.1.js')}"/>
 <apex:includeScript value="{!URLFOR($Resource.streaming, 'jquery.cometd.js')}"/>

 <!-- Google Maps -->
 <script type="text/javascript" src="https://maps.google.com/maps/api/js?sensor=true"></script>

 <style>
 body, html {
 height: 100%;
 width: 100%;
 }
 #map_canvas {
 width: 100%;
 height: 100%;
 padding: 0;
 }
 </style>
 <script>
 var map = null;
 var pins = {};

 $(document).ready(function(){
 // Connect to the CometD endpoint
 $.cometd.init({
 url: window.location.protocol+'//'+window.location.hostname+'/cometd/31.0/',
 requestHeaders: { Authorization: 'OAuth {!$Api.Session_ID}'}
 });

 // Subscribe to a topic. JSON-encoded update will be returned
 // in the callback
 $.cometd.subscribe('/topic/VehicleUpdates', function(message) {
 // Useful for debugging - you'll see output in the browser developer console
 console.log("Message: ", message);

 var pin = updatePin(message.data.sobject);

 // Zoom out as necessary as vehicles move around
 if (!map.getBounds().contains(pin.marker.getPosition())) {
 zoomToFitMarkers();
 }
 });

 initGmap();
 });
 function initGmap() {
 // Server side will render array of vehicles
 var vehicles = {!vehicles};

 var mapOptions = {
 // Need center and zoom to create map, but we'll zoom the map
 // to fit the vehicle positions
 center: new google.maps.LatLng(vehicles[0].Location__Latitude__s,
 vehicles[0].Location__Longitude__s),
 zoom: 18,
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 };

 map = new google.maps.Map($('#map_canvas').get(0), mapOptions);
 createPins(vehicles);

 zoomToFitMarkers();
 }

 function zoomToFitMarkers() {
 var bounds = new google.maps.LatLngBounds();

 Object.keys(pins).forEach(function(name){
 bounds.extend(pins[name].marker.getPosition());
 });

 map.fitBounds (bounds);
 }
 function makeContent(vehicle) {
 return ''+vehicle.Name+'';
 }

 function createPins(vehicles) {
 vehicles.forEach(function(vehicle){
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(vehicle.Location__Latitude__s,
 vehicle.Location__Longitude__s),
 title: vehicle.Name,
 draggable: false,
 map: map
 });

 var infoWindow = new google.maps.InfoWindow({
 content: makeContent(vehicle)
 });

 google.maps.event.addListener(marker, 'click', function() {
 infoWindow.open(map, marker);
 });

 pins[vehicle.Name] = {
 marker: marker,
 infoWindow: infoWindow
 };
 });
 }
 function updatePin(vehicle) {
 var pin = pins[vehicle.Name];

 // Move the marker and update the popup
 pin.marker.setPosition(
 new google.maps.LatLng(vehicle.Location__Latitude__s,
 vehicle.Location__Longitude__s));
 pin.infoWindow.setContent(makeContent(vehicle));

 return pin;
 }
 </script>
 </head>
 <body>
 <div id="map_canvas" style="width:90%;height:600px;"></div>
 </body>
</html>
</apex:page>

Save the page. This will create a page that will render a Google Map with pin locations of any vehicles.

Step 7 - Create the Vehicle REST Service Method

In the Developer Console and select File -> New -> Apex Class. Name the class VehicleService. Replace the template with the following code::

@RestResource(urlMapping='/Vehicle')
global class VehicleService {
 // You could change this to add more detail to response
 global class Response {
 String status;

 public Response(String status) {
 this.status = status;
 }
 }

 @HttpPost
 global static Response upsertStats() {
 String body = RestContext.request.requestBody.tostring();
 System.debug('body:'+body);

 Map<String, Object> request = (Map<String, Object>)JSON.deserializeUntyped(body);

 String name = String.valueOf(request.get('vehicleId'));
 Map<String, Object> recordedWaypoint = (Map<String, Object>)request.get('recordedWaypoint');
 Double latitude = (Double)recordedWaypoint.get('latitude');
 Double longitude = (Double)recordedWaypoint.get('longitude');

 System.debug('name: '+name);
 System.debug('latitude: '+ latitude);
 System.debug('longitude: '+ longitude);

 Vehicle__c v = new Vehicle__c(
 Name = name,
 Location__Latitude__s = latitude,
 Location__Longitude__s = longitude
);

 upsert v Name;

 return new Response('ok');
 }
}

The upsertStats() method will listen for an incoming post and parse the JSON body. In this case, it is listening for an EventNotification from the Carvoyant platform and will parse that JSON body and make the appropriate upsert within Salesforce.

Step 8 - Generate an OAuth Access Token

We will use the command line tool curl to make an API request into the Salesforce system. You can use any tool you prefer. In order to log in, you will need a few pieces of information.

YOUR_APP_CLIENT_ID and YOUR_APP_CLIENT_SECRET can be found within the Connect App that was created in Step 3. Under Setup, select Create -> Apps and click on “Carvoyant API” under the Connected Apps section. Your CLIENT ID and CLIENT SECRET can be found on that screen as the “Consumer Key” and “Consumer Secret”:

[image: ../../_images/salesforce-client-creds.png]
Next, you need to get your security token. Follow the instructions here: https://help.salesforce.com/apex/HTViewHelpDoc?id=user_security_token.htm

Once you have that information, the curl request to log in to the application and generate an access token is::

curl -H 'X-PrettyPrint:1' -d 'grant_type=password&client_id=YOUR_APP_CLIENT_ID&client_secret=YOUR_APP_CLIENT_SECRET&username=user@example.com&password=PASSWORD_AND_SECURITY_TOKEN' https://login.salesforce.com/services/oauth2/token

A successful response will look like this::

{
 "id" : "https://login.salesforce.com/id/00DE0000000HegHMAS/005E0000000HiFiIAK",
 "issued_at" : "1410978727765",
 "token_type" : "Bearer",
 "instance_url" : "https://na16.salesforce.com",
 "signature" : "CB1P0UhX9h/sabBi/9YuPMN8IWPPqsDQA1Oix5nHSLg=",
 "access_token" : "00DE0000000HegH!AREAQLOeD6AcxFYyesguZePLFGnouETXf2lbJRKPnjC3kwEO4MvwfojJNAWohicXsqGE8qGReLaSMAzfWXjCg0Me6OfRRH1N"
}

Make note of the instance_url and the access_token that are returned.

Step 9 - Create the Carvoyant Event Subscription

The simplest way to do this is to log in to the Carvoyant developer console at https://developer.carvoyant.com and use the Interactive API. Switch to the Sandbox API after logging in. Generate your access token and make a call to create a Waypoint Subscription:

[image: ../../_images/salesforce-create-subscription.png]
Enter the vehicleId that you want to send to Salesforce (you can check the Id if you don’t know it by calling the list vehicles endpoint). The request body to send will look like this::

{
 "minimumTime": 0,
 "postUrl": "<INSTANCE_URL>/services/apexrest/Vehicle",
 "postHeaders": {
 "Authorization": "Bearer <ACCESS_TOKEN>"
 },
 "notificationPeriod": "CONTINUOUS"
}

Replace <INSTANCE_URL> and <ACCESS_TOKEN> with the values returned in step 8.

If necessary, repeat this for any other vehicles that you want to be displayed within Salesforce.

Test it Out!

At this point, all of the configuration and setup is completed. The integration is ready to go. Log in to the traffic simulator at https://sandbox-simulator.carvoyant.com and start simulating trips for your vehicles. When you log in to your Salesforce application (and select CarvoyantTest as your application in the top right), you’ll see two tabs, Vehicle and Vehicle Map. Vehicle will display a list of any vehicles that have been sent over:

[image: ../../_images/salesforce-vehicles-tab.png]
Note that the first time you open the Vehicle Map, no pins will be visible. Once you send data over from the traffic simulator you will need to reload the Vehicle Map page. Once the pin displays, the location will be updated as new data is received without having to refresh the page. Click on the Vehicle Map page after data is sent over the first time and you’ll see something like this:

[image: ../../_images/salesforce-vehiclemap.png]
If you want to hook this up to production, the only thing you would need to do is create the Carvoyant Event Subscription against a vehicle in the Production environment (instead of the Sandbox).

And that’s it! With about an hour of work you’ll be able to present your real time connected car location within the Force.com environment.

 © Copyright 2014, Matt Galvin, Ronnie Williams.
 Created using Sphinx 1.3.1.

_images/driverdash-trips-graph.png
3 Driver Dashboard ~ x \ |

[=]B]]

« > O & https:/driver.carvoyant.com/dashboard/trips

e @ =

=
carveyant

Your Car. Your Data. Your API.

Welcome Matt (Edit Profie | Logaut)

Selected Vehicle:

(71999 Jeep Wrangler SE - Matt's jeep Q)

(add | Edit | Delete)

Overview Alerts Applications
Select Trip

Speea
Sep10.2014 T1306AM Sep 10,2014 71638 AM
Sep10,201470356AM Sep 10,2014 70523 AM
Sep9,201460659PM Sep 201461601 P 50
Sep9,201453059PM Sep, 201454030 PM
Sep9,2016 100628AM Sep, 2014101542 AM
Sep9,201473043AM Sep 201473600 AM
Sep9,201472602AM Sep 201472917 AM
Sep9,20147A204AM Sep 201471254 AM
Sep9,201470I2TAM Sep 201470444 AM
Sep 8, 2014 5:18:25 PM. Sep 8, 2014 5:32:55 PM. 45
SepB20I4BZTIBAM Sep 201483616 AM
SepB204B0012AM Sep, 201482012 AM
SepB20I4TI629AM Sep20147:17.05 AM
SepO20TORSOAM Seps, 01470510 AM 5
Sep7, 2014 10551:54 AM Sep7,2014 11:22:13 AM E
Sep7,201462706AM Sep? 20146423 AM &
Sep7,20461S04AM Sep. 201462615 AM H
SepS,204TA2ISAM SepS 201471248 AM <
SepS, 2014 TOS09AM SepS 201470613 AM

15
Trip Details
Start Time Sep 10, 201480301 AM
End Time Sep 10, 2014 83101 AM
Trip Mieage 58
8:05 AM

8:15AM

8:20 AM

8:25 AM

DATA PROVIDED BY dm@

_static/minus.png

_static/up-pressed.png

_static/carvoyant-logo.png
eyant

Carveydn

_images/notificationperiod.png
||| x|

_static/down-pressed.png

_images/sandbox-provision-key.png
Select which web APls you will use
@ Issue a new key for Production API

© standard Developer

Key Rate Limits
10 Calls persecond
5,000Cals per day

Issue a new key for Sandbox API

© sandbox Developer

Key Rate Limits
10 Calls persecond
5,000Cals per day

_static/down.png

_images/auth-dialog.png
ttps://auth.carvoyant.com/login/auth

The application:
Test Carvoyant
Application

is requesting access to your
Carvoyant account.

Please login to approve access.

Username: |
Password: |
Register New Carvoyant Account

_static/up.png

_images/sandbox-my-applications.png
My Applications

KEYS.

APPLICATIONS

MANAGE ACCOUNT

_images/driverdash-rawdata.png
3 Driver Dashboard ~ x \ | =EE

<+ & © & @ https:/driver.carvoyant.com/dashboard/rawData “ 0 e @ =

Welcome Matt (Edit Profie | Logaut)

—~ Selected Vehicle:

carv 9 a nt (1595 jsep Virangler S atEs Jeep)

Your Car. Your Data. Your API. (add | Edit | Delete)

Overview Trips Alerts Applications

Raw Vehicle Data

Times
‘Sep 10,2014 83101 AM ‘GEN_ENGINE_COOLANT_TEMP 1976 deg F
Sep 10,2014 831:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1976 deg F
Sep 10,2014 8:30:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2086deg F
Sep 10,2014 829:00 AM ‘GEN_ENGINE_COOLANT_TEMP 199.4deg F

Sep 10,2014 828:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2012degF
Sep 10, 2014 827:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2086 deg F
Sep 10,2014 826:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1922degF

Sep 10,2014 825:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2086 deg F
Sep 10, 2014 5:24:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2084degF
Sep 10,2014 823:00 AM GEN_ENGINE_COOLANT_TEMP 199.4deg F

Sep 10,2014 822:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1976degF
Sep 10,2014 821:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1976 deg F
Sep 10,2014 820:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2048deg F
Sep 10,2014 8:19:00 AM ‘GEN_ENGINE_COOLANT_TEMP 199.4deg F
Sep 10,2014 8:18:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2048deg F

Sep 10,2014 8:17:00 AM GEN_ENGINE_COOLANT_TEMP 199.4deg F
Sep 10, 2014 8:16:00 AM ‘GEN_ENGINE_COOLANT_TEMP 199.4degF
Sep 10,2014 8:15:00 AM GEN_ENGINE_COOLANT_TEMP 199.4deg F

Sep 10,2014 8:14:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1976degF
Sep 10,2014 813:00 AM GEN_ENGINE_COOLANT_TEMP 201.24degF
Sep 10,2014 5:12:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2084degF

Sep 10,2014 811:00 AM ‘GEN_ENGINE_COOLANT_TEMP 2045deg F
Sep 10,2014 8:10:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1958degF
Sep 10, 2014 803:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1922degF
Sep 10,2014 8:08:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1922degF
Sep 10, 2014 807:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1922degF
Sep 10,2014 806:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1940deg F
Sep 10,2014 805:00 AM ‘GEN_ENGINE_COOLANT_TEMP 1795 deg F
Sep 10,2014 80400 AM ‘GEN_ENGINE_COOLANT_TEMP 1508deg F
Sep 10,2014 7:14:38 AM GEN_ENGINE_COOLANT_TEMP 1598 deg

DATA PROVIDED BY dmﬁ

_images/smartthings_carvoyant_arrival_2.png
X Jeep Arrived

Setup Action
Set the selected lock(s)

Select Lock(s)...

Locked/Unlocked

Set the selected light(s)
Select Light(s)...

Bulb 2

On/Off
ON

_images/smartthings_carvoyant_setup_4.png
X) Connected Car Set.. Done

Carvoyant Setup

Tap below to see the list of vehicles available in
your Carvoyant account and select the ones you
want to connect to SmartThings.

Carvoyant Vehicles

Uninstall

_images/smartthings_carvoyant_ignitionon_1.png
X Carvoyant Actions Next

Assign a name
Jeep Ignition On

When the selected vehicle(s)

Select Carvoyant Vehicle(s)...
1999 Jeep Wrangler SE

perform this event

Select Vehicle Event...

Ignition On

And there is no motion on these sensors
(optional)

Select Sensor(s)

_static/comment.png

_images/smartthings_carvoyant_ignitionoff_1.png
X Carvoyant Actions

Setup Event

App Nickname

Assign a name
Jeep Ignition Off

When the selected vehicle(s)

Select Carvoyant Vehicle(s)...
1999 Jeep Wrangler SE

perform this event

Select Vehicle Event...

Ignition Off

AN o] Ll ot e Y e

_static/ajax-loader.gif

_images/salesforce-vehicles-tab.png
Vehicles: Home ~ sale: x

- © # (@ https:/nal6.salesforce.com, e @

Help&Training | CarvoyantTest v

Home Chatter Files Reports Dashboards VehicleMap +

I . - et or s oce @
I/ Home

4 MattGalin

F 189 N T

L i Recent Vehicles = —

= Vehicle Name

j 187 189
188

T Recycle Bin a7

Copyright © 2000-2014 salesforce.com, inc. Al rights reserved. | Privacy Statement | Security Statement |

_static/plus.png

_static/comment-bright.png

_static/file.png

_images/smartthings_carvoyant_departure_1.png
X Carvoyant Actions

Setup Event

App Nickname

Assign a name
Jeep Departed

When the selected vehicle(s)

Select Carvoyant Vehicle(s)...
1999 Jeep Wrangler SE

perform this event

Select Vehicle Event...

Departure

AN o] Ll ot e Y e

_images/smartthings_carvoyant_myapps_installed.png
@ ©® &
Jeep Ignition Jeep Arrived Jeep Ignition
On Off

@ &

Connected Car Jeep Departed
Setup

_images/salesforce-vehiclemap.png
Home Chatter Files Vehicles Reports Dashboards

~ N
< >

v
Recent ltems

& Matt Gavin
4 BretTobey
& 18
3 18
< 187

@ RecycleBin

angel tand

®

* Golden Gate National

Recreation Area.

Bonta Cove

Aeatraz sfand =)

Golden Gate.
BarSt

Telegraph Hil

PacifcHeights
caforast
Wester - Tenderoin
Addiion

i @,'w;ww! San Fran
Golden Gate Park Valey

Eureka Valley

_ Twinpeaks
I Bernal Heighd

Presidio
South Bay.

Sea it

Richmond. gearygied
Distrer 1™

Duboce
Trisngle

oSt (1)

Sunset Distrct

Traialst D
MiDavidson

§ . Westwood.
® Highlands

Ay sn

& ewea

Lake Merced Park {1sqms Visitacitn
q

Valley

Treastre lsland Wines (%)

Golden Gate.

(]
meryville

Clawsan
™

&
& st Oakiand

San Francisco

ndiaBasin

Hunters Point
Sout Basin

Matt Galvin v

g

®

Clafemont

Mhcai

Avenue | piedmont

e & Joaquin

Help & Training

Map | Satelite

Canyon

e
“ry

5% il Park

estle Glen ¢°
Glenview

Maxwel Par
Fritvale N

St o

East14th
StreetBusiness
Disrct

San Leandro

[=lE]l=]

CarvoyantTest v

_images/driverdash-trips-map.png
[=]B]]

“ 0 e @ =

=
carveyant

Your Car. Your Data. Your AP,

Overview Alerts Applications Raw Data

Select Trip

Sep4,2014 71334 AV Sep4,2014 7:14:15 AM

Sepe, 2014 70251 AV Sepe,2014 70419 AM
Sep3,2014 73350 PM Sep3,2014 73956 PM
Sep3,2014 62025 PM Sep3,2014 63629 PM
Sep3,2014 10235 PM Sep3,2014 105117 PM
Sep3,2014 12:2955 PM Sep3,2014 12:3209 PM
Sep3,2014 93401 AV Sep3,2014 94315 AV
Sep3, 201473822 AM Sep3, 2014 74456 AM
Sep3,2014 71353 AV Sep3, 201471427 AM
Sep3,2014 70253 AV Sep3,2014 70413 AM
Sep2,2014 50308 PM Sep2,201451540 PM
Sep2,2014 956:39 AV Sep2,2014 10:04:34 AM
Sep2, 2014 7:34:47 AV Sep2,20147:42:10 AV

Sep2,2014 71356 AM Sep2,20147:14:38 AV
Sep2,2014 70307 AM Sep2,2014 70405 AM
Aug 29, 2014 7:11:27 AM Aug 29, 2014 7:12:09 AM
Aug 29, 2014 7:04:50 AM Aug 29, 2014 7:05:49 AM
Aug 28, 2014 7:13:09 AM Aug 28, 2014 7:14:01 AM

Aug 28, 2014 7:03:25 AM Aug 28, 2014 7:04:40 AV

Start Time Sep 2, 2014 7:30:00 AM
End Time Sep2,20147:3338 AM
Trip Mileage 12

Selected vehicle:
(1999 jeep Wrangler SE - Matts jeep

(add | Edit | Delete)

Welcome Matt (Edit Profie | Logaut)

DATA PROVIDED BY tdmndsﬁ

_images/smartthings_carvoyant_setup_3.png
X) Carvoyant Authoriz... Done

You have successfully authorized SmartThings
to connect to your Carvoyant account. Select
DONE to continue.

_images/salesforce-create-subscription.png
Waypoint Subscription List Methods | Expand Methods

- Create Waypoint Subscription /vehiclelvehicleld/eventsubscriptioniwaypoint

Parameter Value Type. Description

s E -

string Content type of the payload

Content-Type

REQUEST BODY

_images/smartthings_carvoyant_ignitionoff_2.png
® Jeep Ignition Off

Setup Action
Set the selected lock(s)

Select Lock(s)...

Locked/Unlocked

Set the selected light(s)
Select Light(s)...

Bulb 1

On/Off
OFF

Next

